
Abstract. The representation of sound information in
the central nervous system relies on the analysis of time-
varying features in communication and other environ-
mental sounds. How are auditory physiologists and
theoreticians to choose an appropriate method for
characterizing spectral and temporal acoustic feature
representations in single neurons and neural popula-
tions? A brief survey of currently available scientific
methods and their potential usefulness is given, with a
focus on the strengths and weaknesses of using noise
analysis techniques for approximating spectrotemporal
response fields (STRFs). Noise analysis has been used to
foster several conceptual advances in describing neural
acoustic feature representation in a variety of species
and auditory nuclei. STRFs have been used to quanti-
tatively assess spectral and temporal transformations
across mutually connected auditory nuclei, to identify
neuronal interactions between spectral and temporal
sound dimensions, and to compare linear vs. nonlinear
response properties through state-dependent compari-
sons. We propose that noise analysis techniques used in
combination with novel stimulus paradigms and para-
metric experiment designs will provide powerful means
of exploring acoustic feature representations in the
central nervous system.

1 Spectrotemporal decomposition by the auditory system

Sound information is transduced into electrical activity
by an array of sensory receptors in the mammalian
cochlea. Each receptor, or hair cell, is selective for the
frequency of sound vibrations and organized systemat-
ically in the cochlea from low to high frequency
(Liberman 1982). This frequency information is relayed
by the bundle of auditory nerve fibers leading to the

central nervous system, where the sound is further
parsed and processed into identifiable messages.

Frequency is the principal organizational parameter
for sound information in the auditory pathway. The
sensory neuropil of nearly every auditory station is or-
ganized into contiguous frequency-tuned channels, pre-
serving the frequency selective axis of the cochlea. By
direct analogy, the position of a spot of light in a visual
scene is expressed in the spatial location of neurons in
the retinal epithelium, and this representation is pre-
served in the central visual system (Tusa et al. 1978).
However, while the neuronal organization in the retina
for visual stimuli follows a nearly point-for-point con-
formal mapping of the external visual image, the spatial
position of sound sources is not systematically mapped
in the early auditory system. Instead, acoustic sound
vibrations are converted into a time-frequency pattern of
neuronal activity on the sensory receptor surface
(Fig. 1).

The principal outcome of this early transformation by
the cochlea is that sound signals are not explicitly rep-
resented in the brain as they are in the external world.
Thus, position in the external world is relayed to the
brain through frequency-dependent cues, which have to
be sorted and decoded at higher levels of processing.
This initial decomposition by the peripheral auditory
receptor constrains the representation of sounds to a
time-dependent frequency activation pattern. As such,
the input to the central auditory system is best expressed
as a neural activity pattern that depicts the energy
modulations of the cochlea. The central auditory system
must, in turn, manipulate this neuronal activity pattern
to decipher and extract information about the source
content and to estimate the position of the sound source
in the external environment.

How is this sound information in the cochlear output
pattern represented and processed by the brain? In this
review, we will discuss how sound information is
decomposed in the central auditory system into ele-
mentary spectrotemporal features. We will focus on
showing how spectrotemporal components in complex
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sounds are systematically manipulated and transformed
across higher levels of processing.

2 Characterizing auditory receptive fields:
first-generation approaches

Stimulus response function

Our understanding of how spectral and temporal
information in complex signals is represented in the
nervous system has relied on methods to measure the
stimulus-response function (SRF) of neurons. The SRF
describes the manner in which a sound is encoded by an
individual neuron as a train of action potentials or
spikes. Unfortunately, the number of available methods
to measure neuronal sensitivities is almost as numerous
as the number of researchers studying the auditory
system – and this presents a significant interpretational
challenge. Technically, the types of SRF that can be
constructed from neurophysiological data are limited by
an experimenter’s ability to synthesize novel stimulus
paradigms to address a specific question or hypothesis.
Apart from this unlimited supply of experimental test
stimuli, analysis approaches for measuring neuronal
SRFs typically fall into one of three categories: poststi-
mulus averaging, parameter-space approaches, and
preevent averaging.

Generally speaking, the SRF of a neuron can be de-
fined as the collection of stimuli, stimulus parameters, or
stimulus combinations that elicit specific neuronal re-
sponse patterns. Ideally, a complete characterization of
a single neuron would therefore require that we present
every existing sound stimulus in the auditory environ-
ment, in every possible combination, and that we mea-
sure all the elicited response patterns. That is, not only
must we consider all of the possible stimuli that may

potentially elicit responses, but we must in addition
identify the action potential response sequences associ-
ated with a given stimulus. A practical solution is to
probe neural responses with a subset of stimuli to
approximate the SRF.

Parametric and poststimulus analysis of SRF

One way to remedy this dimensionality problem is to
consider only a few stimulus parameters of interest, such
as sound frequency or intensity, from which one can
perturb the sound by independently manipulating each
parameter. Neuronal response firing rates can then be
plotted as a function of each parameter. Figure 2
illustrates such an example for an auditory midbrain
neuron from the inferior colliculus that was tested with
tone pips of different frequencies and intensities
(Fig. 2a). The neuron’s frequency tuning curve (FTC)
is obtained by plotting the firing rate as a function of
frequency and sound pressure level (Fig. 2b). The color
scale on the response surface plot designates the
neuron’s response firing rate as a function of the
stimulus parameters (Fig. 2b). For a large subset of
the frequencies and intensities tested, the neuron pro-
duces no noticeable change in firing rate (blue). The
neuron responds over a restricted range of frequencies
and intensities and is preferentially activated by sound
frequencies around 18 kHz (i.e., the best frequency, or
BF). As the sound intensities become louder, the range
of frequencies (i.e., the bandwidth, or BW) that activate
this neuron broadens. That is, at high sound intensities
the neuron becomes less selective for the frequency
content of the sound.

Parameter-space approaches of this form are ex-
tremely useful and intuitive; however, they are usually
limited to simple sounds that are easily manipulated by
independent parameters. Furthermore, representing the
neuronal response as an average firing rate can discard
meaningful structure in the temporal response pattern
that can potentially convey information about the
dynamics of the sensory stimulus.

Poststimulus averaging techniques provide one way
of recapturing response timing information in neuronal
spike trains. Poststimulus averaging methods, such as
the poststimulus time histogram technique, rely on re-
peated presentation of a fixed stimulus, while the re-
sponse following the stimulus is collected and averaged
using sufficiently small time bins. This repeated averag-
ing over multiple trials removes spike-timing noise that
is not systematically related to the stimulus. The primary
advantage over the direct parametric approach is that
the neuronal response can be studied as a function of
time at a chosen temporal resolution. This additional
timing information can, in turn, be used to relate the
precise timing of action potentials to specific stimulus
instances or to measure the reliability and stimulus
information content conveyed by single action potentials
(de Ruyter van Steveninck et al. 1997). Parameter-space
approaches are often combined with poststimulus aver-
aging techniques into hybrid methods that allow exper-

Fig. 1. Spectrotemporal decomposition by the cochlea. An array of
frequency-tuned hair cell receptors on the basilar membrane (unfolded
for illustration purposes) decomposes the continuous sound vibrations
(black waveform) into a spectrotemporal activity pattern. Hair cells are
aligned from low to high frequencies on the basilar membrane. The
spectrotemporal neuronal activity pattern reflects the time-varying
energy modulations of the stimulus along each frequency channel
from low to high frequency. Illustrated for a segment of human speech
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imenters to study temporal information processing as a
function of a specific stimulus parameter (Langner and
Schreiner 1988; Schreiner and Urbas 1988; Rees and
Palmer 1989).

Despite their limitations, these approaches have suc-
cessfully identified the representation of simple acoustic
parameters in various auditory nuclei. For instance,
frequency selectivity has been probed with tone pips of
different frequencies by tabulating the response of neu-
rons as a function of preferred frequency and position in
cortical and subcortical areas (as in Fig. 2). These
studies have shown topographic cortical and subcortical
representations for tone-frequency selectivity (Merze-
nich and Reid 1974; Merzenich et al. 1975) and for
frequency integration bandwidths (Schreiner and Lang-
ner 1988; Schreiner and Mendelson 1990; Heil et al.
1992; Read et al. 2001). This frequency-based represen-
tation is an integral feature of the entire lemniscal
auditory pathway. Similarly, auditory neurons are also
selective for temporally varying stimulus components
including temporal modulations in signal energy and
time-varying frequency transitions (Langner and Schre-
iner 1988; Schreiner and Urbas 1988; Rees and Palmer
1989). These too can show a systematically distributed
organization in both subcortical and cortical stations
(Schreiner and Langner 1988; Heil et al. 1992; Mendel-
son et al. 1993; Read et al. 2001).

Probing the SRF with species-specific sounds

An alternative approach to testing neuronal sensitivities
in animal species that rely heavily on communication
behavior is to approximate the SRF for animal vocal-

ization by parametrically modifying the structure of the
natural vocalization. The most convincing examples
showing the importance of spectral and temporal sound
structure on neuronal information processing comes
from species where a specific audio-vocal behavior
guides the functional organization of the sensory
representation. Neurons in these model systems are
exquisitely tuned to biologically important sounds.
Species-specific vocalizations are therefore often re-
corded onto a computer where they are digitally
manipulated (by changing spectral or temporal param-
eters) and played back to the animal. This approach has
been extremely successful for studying the neuronal
substrate of prey-velocity detection and spatial naviga-
tion in echolocating bats (Suga et al. 1975; Suga and Jen
1976; Fitzpatrick et al. 1993; Casseday et al. 1994;
Portfors and Wenstrup 2001). Behavioral specificity in
bats is reflected in the magnified representation of
combination-sensitive and time-delay-tuned neurons
that respond selectively to the frequency content and
temporal structure in their echolocation and communi-
cation signals. Bats emit high-frequency sonar pulses,
which they use to navigate during active echolocation.
By comparing the timing delay and spectral energy
differences between the emitted sonar pulses and the
return echoes, they can create an internal image of their
external environment and the location of their prey.
Similarly, neuroethologically motivated approaches
have also been the principal driving force for defining
the neuronal mechanisms underlying song analysis,
production, and learning in songbirds. Songbird neu-
rons can be quite sensitive to the sequential order of
phrases or temporal conjunctions in a song motif and to
temporal stretching or compression of a song sequence

Fig. 2. Conventional frequency tuning curve (FTC) receptive field.
Pure tones of varying frequency and intensity (SPL) are presented (a)
to the animal. The direction of increasing frequency and sound
pressure are designated by arrows. Response firing rates for each
condition are tabulated into a two-dimensional matrix (b). The color
bar designates the measured neuronal firing rate in spikes/s. This

neuron responds maximally with a best frequency (BF) near 18 kHz.
Its frequency response bandwidth (BW) increases with increasing
sound pressure, and the neuron is therefore less selective for frequency
components at high sound levels. Illustrated for a cat inferior
colliculus neuron
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(Brenowitz et al. 1997; Doupe 1997). As such, these
manipulations have demonstrated extensive neuronal
selectivity to the dynamic spectrum of natural sounds by
showing a direct link between sound structure, behavior,
and neuronal sensitivity.

There are two problems with using naturalistic stimuli
alone to probe neuronal response preferences in most
other species. First, not all animals have highly stereo-
typed vocalizations to draw from, so that selecting the
appropriate stimulus or defining appropriate stimulus
paradigms is not trivial. Second, as demonstrated in the
bat, the use of a limited set of natural sounds with highly
biased spectrotemporal frequency distributions to study
neuronal sensitivities makes it difficult to predict how
the same neurons would respond to other relevant
sounds. Cortical neurons in the bat were previously
thought to be specialized exclusively for echolocation
pulses. However, these neurons actually exhibit dual
sensitivity to echolocation and communication sounds
(Ohlemiller et al. 1996; Razak et al. 1999), thus serving
an important secondary function.

3 Characterizing auditory receptive fields:
second-generation approaches

Receptive field (RF) analysis has been progressing in
recent years because of the need to study neuronal
dynamics of frequency integration with increasingly
more complex auditory stimuli including natural sounds
(Nelken et al. 1997; deCharms et al. 1998; Klein et al.
2000; Theunissen et al. 2000; Depireux et al. 2001;
Schnupp et al. 2001; Sen et al. 2001; Blake andMerzenich
2002; Escabı́ and Schreiner 2002; Miller et al. 2002;
Linden et al. 2003). As stimulus complexity increases, it
becomes increasingly more difficult to evaluate neuronal
preferences using direct parameter-space approaches
because spectral and temporal features are very often
not easily represented by simple parameters. Alternative
methods are therefore required to evaluate the relation-
ship between sound stimulus and response.

Noise analysis, preevent averaging,
and reverse correlation

The combined use of structured noise and reverse
correlation analysis has been a successful and practical
approach to mapping both complex and simple response
properties in the auditory system. This method was first
introduced into neuroscience to study the temporal
filtering properties of single auditory nerve fibers (de
Boer and de Jongh 1967). Later, this technique was
extended to the analysis of biological systems with
multiple inputs (Marmarelis and Naka 1974), such as for
the array of photoreceptors in the retina or the collection
of hair cells in the cochlea. This led to the development
of the spatiotemporal receptive field in the central visual
system (Jones and Palmer 1987; DeAngelis et al. 1993)
and the spectrotemporal receptive field (both referred to
as STRF) in the auditory system (Hermes et al. 1981).

Generating STRFs

Unlike conventional frequency tuning curve receptive
field approaches (Fig. 2), which measure spectral inte-
gration properties independently of timing, auditory
STRFs capture the evolution of the frequency response
integration over time. This history of the response can be
consolidated into a pictorial representation of the
neuron’s preferred sound pattern. Generating an STRF
first requires a sound that covers a wide range of
stimulus possibilities so that the neuron is evenly
exposed to a large subset of all possible sound config-
urations (Fig. 3). The STRF is then obtained through a
procedure called reverse correlation or spike-triggered
averaging (sometimes also referred to as preevent

Fig. 3. Estimating the auditory STRF via reverse correlation for
various sound ensembles. Example of three sounds (top) that are
structurally compatible with the STRF measurement procedure:
random tone sequence, ripple noise, and dynamic moving ripple.
These sounds cover a wide range of spectrotemporal modulations in
an unbiased manner, so that the STRF structure is not systematically
biased by the stimulus properties. The reverse correlation or
REVCORR (gray box) is shown for the dynamic moving ripple
stimulus. The STRF is estimated by spike-triggered averaging of the
sound waveforms just before each action potential. The STRF reflects
the preferred stimulus pattern that tended to activate the neuron and
is expressed as a time-frequency pattern of neuronal excitation (red)
and inhibition (blue). The example neuron contains a high-energy
excitatory response with a frequency of �1.5 octaves and duration of
�30 ms and a low-energy inhibitory receptive field subregion of �2.5
octaves (adapted with permission from J. Neurosci; Escabi and
Schreiner 2002)
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averaging; Fig. 3). Reverse correlation is performed by
averaging all the stimulus patterns just preceding each
action potential (Fig. 3, bottom panel). In this manner,
the history of the sound is compared to the history of the
neuronal spikes and this reveals the stimulus spectro-
temporal configuration that is most likely to activate the
neuron. The basic assumption behind this procedure lies
in the fact that neuronal responses are not simply
random events but are instead the manifestation of
sound patterns that efficiently activate the neuron. One
can therefore look back in time over a short time
interval prior to each spike to get a sense of the sound
configuration that causes the neuron to spike. This
spectrotemporal averaging therefore reveals the neu-
ron’s preferred stimulus, expressed as a time-frequency
pattern of sound modulations preceding the onset of
action potentials. An example STRF is shown in Fig. 3.
Average spiking of the neuron’s output is indicated by
the color spectrum shown. Red stimulus domains in the
STRF indicate that the stimulus tended to be on prior to
the initiation of an action potential (at delay 0 ms),
whereas blue indicates that the stimulus was, on average,
off. The example neuron (Fig. 3) is preferentially
activated by a 1.5-octave frequency sound component
that is turned on sequentially in time. The STRF can
alternatively be interpreted as a spectrotemporal filter
function, in which case the red receptive field regions
correspond to excitatory neuronal inputs that tend to
increase the neuron’s activity above the mean response
level. Blue or off-sound regions are predominantly
inhibitory or suppressive, and on-stimuli presented
within these domains would decrease the firing rate.

4 Spectrotemporal preferences and transformations

STRF-based techniques provide a means of measuring
neuronal response properties at different sensory pro-
cessing stages that can be characterized and compared
quantitatively. Dramatic changes in receptive field
properties have been observed in both auditory and
visual sensory pathways using conventional SRF and
species-specific SRF techniques. The spectrotemporal
transformations in the transition from thalamus to
cortex have been recently confirmed and extended using
STRF analysis. Here we will discuss a series of studies
that have examined STRF preferences and the transfor-
mation across various auditory nuclei.

Simple features of STRFs

One of the advantages of noise and reverse correlation
techniques is that spectral and temporal response
properties can be quantified together. Furthermore, the
excitatory and inhibitory nature of the response can be
approximated. There are several ways to quantify
temporal and spectral sensitivities and, as discussed
later, their interactions. Simple structural parameters
can be measured directly from the STRF. Two types of
temporal properties can be measured directly as the time

to maximum excitatory response (i.e., peak latency) and
the overall response duration in the STRF (Fig. 4a).
Spectral RF attributes are easily obtained by measuring
the frequency associated with the maximal mean firing
rate (i.e., a neuron’s best frequency, BF) and the total
range of frequencies within the significant portion of the
STRF (i.e., receptive field bandwidth, BW). Conceptu-
ally, peak latency, best frequency, and bandwidth are
analogous to the same parameters obtained with more

Fig. 4. Relating the STRF to the neuron’s spectrotemporal modula-
tion preferences. a Simple response parameters such as the response
latency (Lat), best frequency (BF), and receptive field bandwidth
(BW) are immediately available from the STRF (black and gray
arrows). These parameters, however, focus exclusively on the short-
latency dominant excitatory receptive field subregion (encircled black
region). b Other, more intricate modulation response parameters can
be obtained by converting the STRF into a frequency domain
representation: the ripple transfer function (RTF). Here, a two-
dimensional Fourier transform is used to convert the STRF into
constituent spectral and temporal parameters. The time axis of the
STRF is converted into a temporal modulation frequency axis while
the spectral axis is converted into a spectral modulation axis. The
location of the dominant energy peak of the RTF depends strongly on
the spectrotemporal arrangements and the extent of excitation and
inhibition in the STRF. This peak determines the neuron’s best
temporal modulation (bTM) and best spectral modulation (bSM).
The depicted thalamic neuron responds preferentially with a bTM of
� 25 Hz and bSM of � 0:75 cycles/octave. Spectral (c) and temporal
(d) cross sections of the RTF show that the neuron selectively filters
spectrotemporal modulations around the bTM and bSM. (Adapted
with permission from J. Neurophys; Miller et al. 2002)
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conventional techniques such as the FTC (Fig. 2) and
histogram analysis of FTC spike data (Cheung et al.
2001). Although some RF properties appear to be the
same between STRFs and FTCs, other response prop-
erties are not. First, STRFs often show on and off
(excitatory/inhibitory) temporal response patterns
extending over tens to hundredths of milliseconds. The
duration of the excitatory RF can be measured with
single-tone FTC spike data, but inhibition or suppres-
sion of spike output cannot be measured without the
addition of a masking or priming stimulus (Brosch and
Schreiner 1997). Second, although receptive field best
frequencies are very similar for STRF and FTC,
receptive field bandwidth relationships are often signif-
icantly different for the two approaches. Bandwidth
typically increases with increasing SPL for pure tones (as
in Fig. 2); however, this is not the case for STRFs
obtained with broadband noise that have constant
bandwidths with increasing SPL (Escabı́ et al. 2003;
Valentine and Eggermont 2003). Such differences indi-
cate that narrow-band pure tones and broadband
sounds that fully engage the cochlear sensory epithelium
are not entirely complementary. As such, the behavior of
the neuron’s response and its preferences to pure tones is
insufficient to explain the neuron’s preference to more
complex sounds and vice versa. Until the underlying
cause of such RF differences is known, it is of some
advantage not to abandon conventional approaches
altogether.

Extracting spectral and temporal features
from the STRF

The simple descriptions of STRF parameters provide a
tool for quantifying basic measures of neuronal sensitiv-
ity and for relating these to conventional SRF ap-
proaches. However, these parameters tell us nothing
about more intricate properties of the sensory integration
such as the arrangements and relative magnitude of
excitation and inhibition that are evident in the vast
majority of neurons. To study such properties, comple-
mentary approaches are needed. STRFs can be converted
into a modulation transfer function representation (i.e.,
using Fourier analysis; Fig. 4) that depicts the response
strength of the neuron as a function of spectral and
temporal sound parameters (Klein et al. 2000; Escabı́ and
Schreiner 2002; Miller et al. 2002; Qiu et al. 2003). The
resulting spectral cross section of the modulation transfer
function corresponds to the spectral modulation transfer
function (sMTF; Fig. 4c). Conversely, the temporal cross
section corresponds to the temporal modulation transfer
function (tMTF; Fig. 4d). The neuron’s best spectral
modulation (bSM, also referred to as best ripple density)
and best temporal modulation (bTM) correspond to the
locations in the modulation transfer function that
produce amaximum response. These high-order response
parameters are directly analogous to those obtained with
more conventional techniques and are closely linked to
the spectral and temporal arrangements of excitation and
inhibition (Qiu et al. 2003).

Demonstrating RF transformations with STRFs

Noise analysis and approximations of the different STRF
components have been used in both visual and auditory
sensory systems to quantify functional transformations
along sensory pathways. The contribution of a single
thalamic neuron input to a single cortical neuron can be
further quantified by using noise analysis to characterize
the STRFs from synaptically paired neurons (Alonso
et al. 2001; Miller et al. 2001). With these combined
approaches a dramatic transformation from circular
symmetric RFs in the retina and thalamus to elongated
oriented RFs in the visual cortex has been observed and
quantified (Hubel and Wiesel 1962; Hirsch et al. 1998;
Ferster and Miller 2000; Alonso et al. 2001). Recently, a
similar approach has been taken to study functional
transformations along the auditory pathway. First we
will summarize some general principles of transforma-
tions in sMTFs and tMTFs along the auditory pathway.
In the following section, we will describe how quantifi-
cation of spectrotemporal interdependence can be
achieved with noise analysis techniques.

Spectral modulation transfer functions in mammals

sMTFs between thalamus and cortex have been quanti-
tatively assessed in the auditory pathway with STRF
techniques (Depireux et al. 2001; Sen et al. 2001; Miller
et al. 2002; Linden et al. 2003; Qiu et al. 2003). Using
paired thalamocortical recordings of STRFs, Miller and
colleagues found that only 30% of the neurons showed a
significant increase in bandwidth (Miller et al. 2001).
Thus, the spectral component of the STRF is not
systematically elongated in a fashion similar to that seen
in the visual pathway. Furthermore, neurons appear to
share nearly identical sMTFs at successive stages of
processing in the mammalian auditory system. Measure-
ments of the RF bandwidths and bSM in cats shows that
these properties are highly conserved between the
auditory midbrain (ICC), thalamus (MGBv), and
primary auditory cortex (AI; Miller et al. 2002; Qiu
et al. 2003). Within the cortical pathway, Rutkowski and
colleagues found significant differences in the spectral
component of STRFs across the core and ventrolateral
belt areas of the auditory cortex of guinea pigs (Rut-
kowski et al. 2002). Thus, the cortical pathway appears
not to conserve spectral preferences but, instead, appears
to follow a direct hierarchical progression.

Temporal modulation transfer functions in mammals

When temporal RF properties are quantified and
compared, a general decrease in the temporal following
rates is observed within the progression from periphery
to central areas (Depireux et al. 2001; Sen et al. 2001;
Miller et al. 2002; Linden et al. 2003; Qiu et al. 2003).
Auditory midbrain neurons exhibit the fastest temporal
dynamics. The ability to follow rapid transient sound
modulations is successively reduced in MGBv and AI
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(Miller et al. 2002; Qiu et al. 2003). A similar transfor-
mation in temporal properties has been demonstrated
with more conventional stimuli (Langner and Schreiner
1988; Schreiner and Urbas 1988; Rees and Palmer 1989;
Eggermont 1994; Krishna and Semple 2000). A recent
study examined differences in cortical STRFs between
the thalamic recipient layers of AI and the anterior
auditory field (AAF) of mice (Linden et al. 2003). This
study showed that the RF differences in these two
parallel cortical areas are primarily reflected along the
temporal dimension – AAF have faster STRFs. AI and
AAF are believed to be hiearchically equal regions,
reciprocally connected via layer III and each with one
complete cochleotopic representation. This recent find-
ing suggests an important functional difference between
the two areas. A reverse hierarchical relationship for
temporal preferences has been observed in visual cortical
pathways (Heller et al. 1995; Lamme et al. 1998). These
studies have extended the classical methods by showing
that the timing as opposed to spectral properties account
for the dominant receptive field transformation in the
ascending auditory pathway.

Spectral and temporal modulation preferences
in avian species

A similar set of results was observed in the auditory
forebrain circuits of the zebra finch (Fig. 5, G–L). In
these studies, Theunissen and colleagues developed a
technique for measuring receptive fields with conspecific
vocalizations (Theunissen et al. 2000), which they later
used to study the transformation between interconnected
high-level cortical areas specialized in the audio-vocal
integration of zebra finch songs (Sen et al. 2001). Their
procedure for measuring STRFs with natural sounds is
similar to the conventional spike-triggered averaging
procedure of Fig. 3 but requires an additional step to
remove biases in the spectrotemporal sound structure
from bird songs (Fig. 6). This compensation ensures that
a broad range of spectrotemporal features is probed so
that the STRF reflects the true integration properties of
the neuron. Furthermore, it guarantees that there are no
systematic distortions in the STRF because of correla-
tions in the natural sound. As for the lemniscal auditory
pathway in mammals (Fig. 5, top), zebra finch STRFs

Fig. 5. Differences in RF structure between
mutually connected auditory nuclei in the
cat and songbird systems. RFs can exhibit
simple on–off arrangements (A, D, E, G, H,
K) to complex arrangements exhibiting
multiple excitatory and inhibitory subre-
gions (C, J, L). Other neurons show selec-
tivity for dynamic frequency transitions and
are characterized by obliquely oriented time-
frequency excitatory and inhibitory compo-
nents (B and F). The cat lemniscal (A–F)
pathway shows a clear reduction in temporal
modulation preferences, although spectral
preferences are remarkably similar. In the
cat auditory midbrain (ICC, A, and B),
neurons exhibit short latency transient RFs
with fast modulation preferences, whereas in
the primary auditory cortex (AI, E, and F),
STRFs are typically of much longer dura-
tion. A similar progression from slower to
faster and more intricate RF arrangements
is observed in the high-order song selective
areas of the zebra finch (G–L). Arrows
indicate the predominant feedforward (sin-
gle arrow) and reciprocal (bidirectional
arrow) interconnectivity between auditory
nuclei in the avian forebrain. (Adapted with
permission from J. Neurophys; Sen et al.
2001)
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are fastest at early stages of processing and become
successively slower in higher centers (Fig. 5, bottom).
RFs in the successive stages of the early mammalian
pathway, however, share similar spectral integration
properties, whereas RF complexity increases dramati-
cally in successive stages of the avian telencephalon
pathway (Sen et al. 2001). Similar changes in spectral
structure were observed by Rutkowski and colleagues
(Rutkowski et al. 2002) in high-level cortical areas. One
possible explanation for this finding is that intracortical
excitation and inhibition combined with a complex
anatomical circuitry in these high-level areas significantly
refines spectrotemporal preferences. This, in turn, leads
to a dramatic modification of the available STRF
arrangements. Such differences in RF organization could
potentially play an important role in the analysis of
spectrotemporal features in environmental sounds.

Quantifying spectrotemporal interactions

The finding that most of the transformations in the
auditory pathway are reflected along the timing prop-
erties of the STRF populations suggests that, at the
population level, spectral and temporal preferences
appear to be independent of each other. This, however,
need not be the case for single neurons. As an example,
the spatial sensitivity of most visual neurons changes as
a function of time, leading to a high selectivity for
moving objects. Do auditory neurons exhibit a similar
time-dependent frequency tuning, or is frequency tuning
largely independent of temporal modulation tuning? If
so, how prevalent is this effect? One way to probe this
issue is to look at the interdependence between spectral

and temporal dimensions of each STRF (Depireux et al.
2001; Sen et al. 2001; Miller et al. 2002; Linden et al.
2003; Qiu et al. 2003).

One of the major advantages of using noise analysis
techniques is its ability to quantify the interactions or
dependencies between spectral and temporal compo-
nents of a neuron’s response to sound. If the STRF can
be factorized into separable functions of time and fre-
quency, STRF ðt; f Þ ¼ HðtÞ � Gðf Þ, then spectral integra-
tion is independent of temporal processing. Using this
approach to measure independence of processing, most
studies have found that some neurons do indeed exhibit
strong time-frequency inseparability – such as slanted
spectrotemporal components (e.g., Fig. 5b and f) –
however, this is not the prevailing RFs structure in most
stations. Instead, many neurons exhibit approximately
time-frequency separable structure (Depireux et al. 2001;
Sen et al. 2001; Miller et al. 2002; Linden et al. 2003; Qiu
et al. 2003), suggesting that temporal and spectral cues
are integrated independently of each other. This finding
implies that, unlike the pervasive motion sensitivity
throughout the cortical visual pathway, time-dependent
frequency tuning alone is not the predominant mecha-
nism underlying frequency modulation sensitivity in the
auditory pathway (Mendelson et al. 1993; Nelken and
Versnel 2000). Indeed, a recent study has shown that
neuronal sensitivities to time-varying frequency com-
ponents in primary auditory cortex arise through
asymmetric interactions in the spectral arrangement of
excitation and inhibition (Zhang et al. 2003). Thus,
sensitivity to time-dependent frequency conjunctions
arises through interactions of excitation and inhibition
and not necessarily through diagonally oriented excit-
atory components.

Fig. 6. Illustration of the modified reverse
correlation approach for measuring audi-
tory STRFs with natural sounds from a
zebra finch neuron. The spike-triggered
average waveform obtained with the con-
ventional REVCORR approach of Fig. 3
shows a conspicuous arrangement that
extends to times following the action
potential. This spike-triggered average
waveform reflects correlations in the zebra
finch song that distort the structure of the
STRF measurement. This measurement,
therefore, does not reflect the true RF
integration properties of the neuron. To
obtain the true STRF, a detrending proce-
dure is applied to the spike-triggered aver-
age, which removes the correlations in that
natural sound. Following this bias removal,
the STRF is constrained to delays before the
spike time (at 0 ms), as expected
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5 Limits of the auditory STRF

Linear or nonlinear?

Nonlinear information processing is an essential aspect
of all neuronal systems that contributes to their
processing efficiency and computing diversity. A recent
line of discussion within the auditory community has
focused on whether linear modeling approaches, such as
the STRF, are potentially well suited for studying
various types of nonlinear transformations. It has been
suggested that the usefulness of the STRF for studying
the auditory system may be significantly limited by its
inability to represent nonlinear properties of the SRF.
While this is true for certain types of nonlinear
transformations, this view is not entirely correct.

The confusion comes from the fact that the STRF is,
by definition, a linear model. That is, a prediction of the
neuronal response can be obtained by linearly filtering
the sound waveform with the STRF. What is not
explicitly expressed by this formulation is that the STRF
measurement obtained through reverse correlation can
actually reflect nonlinear information of the neuron
under study (Marmarelis and Marmarelis 1978), so that
the STRF structure changes with operating conditions
to reflect the neuron’s state-dependent changes of the
nonlinear transformation.

To illustrate this, consider a cosine signal that is put
through various linear and nonlinear transformations
(Table 1). When the transformation obeys a linear
relationship (f ðxÞ ¼ x), the input and output signals are
functionally identical, although they may differ by a
fixed amplitude-scaling factor. Therefore, the input and
output are perfectly correlated, and reverse correlation
approaches will accurately reflect this linear transfor-
mation. By comparison, for a nonlinear element the
output may or may not resemble the input, and this will
typically depend on the structure of the nonlinearity.
Quadratic nonlinearities, such as for f ðxÞ ¼ x2, distort
the input cosine waveform so that it bears no resem-
blance to the original signal, producing a signal of twice
the original frequency (Table 1). As such, direct reverse
correlation methods that rely on linear correlations be-
tween the input and output signal will show no evident
component in the measured receptive field function, and
the technique fails to work. By comparison, cubic-like

nonlinearities (e.g., f ðxÞ ¼ x3) distort the signal wave-
form but preserve a significant fraction of the input
waveform. This is true even if the operating point is
changed, although the correlated component changes
with operating point (bottom of Table 1). As such,
certain nonlinearities are indeed compatible with reverse
correlation and the nonlinear transformation can be
systematically evaluated by changing the stimulus
operating conditions.

The principles underlying the behavior of the STRF
are essentially identical to those described by simple
mathematical transformations with simple sinusoid sig-
nals. Conceptually, the STRF is compatible with those
nonlinear transformations that preserve the precise
timing properties between the spectrotemporal stimulus
patterns and the neuronal response. The traditional
interpretation of these requirements is that the neuron’s
response should be linearly modulated by the input
sound, so that an onset–offset stimulus sequence pro-
duces an increase in the neurons firing, followed by a
reduction in firing. Although this form of linear rate
coding is clearly compatible with the STRF, it is not the
only response mode that is amenable to the technique.
Precise synchronization between neuronal events and
spectrotemporal sound features could, under various
circumstances, play a more important role in the coding
of acoustic features. Thus, various types of nonlineari-
ties are structurally compatible with the STRF, assum-
ing that they preserve a precise temporal relationship
between the stimulus and the response.

6 Future of the auditory STRF: probing fine temporal
and nonlinear response properties

Fine temporal response properties

To illustrate the importance of timing on the STRF
construction procedure of Fig. 3, the responses of two
auditory midbrain neurons are shown for repeatedly
presented segments of a moving ripple stimulus (Fig. 7).
The response rastergram of neuron 1 shows a precisely
time-locked spike signature down to a few millisecond
resolution. For both neurons, the effects of distorting the
temporal response pattern are illustrated by adding
artificially introduced spike-timing noise to the original

Table 1. Linear and nonlinear transformations (x; x2; x3) applied
to simple cosine waveforms showing those output (response)
components that are compatible with the reverse correlation
(REVCORR) approach. Only those terms that are correlated
between the input and output show up in the REVCORR mea-

surement (highlighted with boxes). Changing the operating point
by adding a constant DC term to the input, C, for the cubic non-
linearity (x3) changes the magnitude of the correlated output
component. A similar result is also obtained if one changes the
operating point of the input by a constant factor for x2 (not shown)

Input Transformation Output REVCORR Compatible

x ¼ A cosðxtÞ f ðxÞ ¼ x A cosðxtÞ Yes

x ¼ A cosðxtÞ f ðxÞ ¼ x2 A2

2 þ A2

2 cosð2 � x � tÞ No

x ¼ A cosðxtÞ f ðxÞ ¼ x3 3A3

4
cosðxtÞ þ A3

4
cosð3 � x � tÞ Yes

x ¼ C þ A cosðxtÞ f ðxÞ ¼ x3 C3 þ 3CA2

2 þ 3C2Aþ 3A3

4

h i
cosðxtÞ Yes

þ 3CA2

2 cosð2 � x � tÞ þ A3

4 cosð3 � x � tÞ
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response pattern. This intentional introduction of tem-
poral noise has a distinguishable outcome on the STRF
structure. In both cases, the RF magnitude becomes
weaker and the RF shape is blurred as more spike-
timing noise is introduced. This effect, however, is more
pronounced for neuron 1 because its tightly synchro-
nized action potentials quickly become misaligned with
its preferred sound waveforms and, as a result, the
specific temporal relationship between the stimulus
modulations and spikes required to generate the STRF
is lost. As such, neurons with long RF durations will
typically tolerate larger temporal degradation in the
spike-timing precision because the stimulus waveforms
that the neuron integrates are correlated with the
neuronal spikes over a wider range of temporal scales.
Clearly, some neurons in the central auditory system do
not time-lock to fine temporal modulations (Langner
and Schreiner 1988; Lu et al. 2001), and it has been
shown that these neurons respond selectively to spec-
trotemporal modulations, although they do not produce
STRFs (Escabı́ and Schreiner 2002).

Probing nonlinear integration with noise analysis
and the STRF

Three recent studies have looked at stimulus-dependent
nonlinear integration with complex broadband sounds.

By realizing that a linear neuron would produce
identical STRFs under a host of operating conditions,
these studies have been able to measure state-dependent
changes in the RF structure that result from high-order
correlations in the stimulus. Theunissen and colleagues
(Theunissen et al. 2000) compared the response proper-
ties of zebra finch neurons to random tone sequences
and zebra finch vocalizations. They found that the RF
structure could be substantially different between these
two conditions, reflecting nonlinear inputs that are likely
not active for random chord stimuli but become evident
with natural sounds. A similar but more pronounced
modification of the STRF was also demonstrated in the
ICC of cats. In this study, Escabı́ and Schreiner (2002)
compared the response of ICC neurons to dynamic
moving ripple (DMR) and ripple noise (RN) sounds
(Fig. 3). Although many neurons behaved as nearly
linear filters, which produced identical STRFs for the
structured DMR and the random RN, a small subset of
neurons exhibited a threshold-like suppressive response
effect (Fig. 8). These neurons were silenced by the RN
sound and responded exclusively to the MR. A third
study looked at state-dependent STRF changes in AI
that result from the density of spectrotemporal tone pip
stimuli (Blake and Merzenich 2002). Using STRF
measurements, AI neurons exhibited a sharpening of
their frequency selectivity for denser tone pip stimuli.
These studies collectively demonstrate how local spec-

Fig. 7. Timing reliability requirements for STRF construction. The
response rastergram showing 100 repeated response trials to dynamic
moving ripple for neuron 1 (top left, labeled 0 ms) is characterized by
phasic responses of a few millisecond resolution. Each spike is
represented by a single dot (1-ms resolution). The effects of artificially
introducing spike-timing noise on the rastergram are illustrated below
the original rastergram (3-, 6-, and 12-ms average errors; shown from
top to bottom). For this very fast transient neuron, STRFmeasurements

quickly degrade for higher timing errors and are essentially void of
structure for errors beyond 3 ms. This shows that precise spike timing is
essential for this neuron and these tightly phase-locked neuronal events
preserve stimulus-related information down to 3 ms resolution. By
comparison, the STRF of neuron 2 (rastergram not shown) tolerates
significantly larger spike-timing errors because the spectrotemporal
features that it responds to are of much longer duration
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trotemporal sound structure can alter the effective
operating regime of the neuron by activating labile
nonlinear inputs.

In terms of neuronal mechanisms underlying nonlin-
ear phenomena, there has been little discussion to define
the relevant nonlinear processes that are potentially
compatible with the STRF approach. Nonlinearities are
abundant in the auditory system, ranging from the rec-
tification of hair cell transduction on the basilar mem-
brane to basic biophysical mechanisms of neurons.
What sorts of mechanism are compatible with the
STRF? The STRF procedure will reflect the composite
influence of various neuronal mechanisms assuming that
the integration time scale and nonlinear dynamics of
each are comparable to the time scales of the relevant
stimulus modulation. That is, the nonlinear effects have
to be sufficiently fast to preserve a one-to-one timing
relationship between the stimulus feature and the neu-
ronal response. Such would be the case for the combined
effect of fast ionic conductances and the intracellular
threshold set by the neuron’s reversal potential –
assuming that input synaptic activity is of sufficiently
large amplitude to produce a suprathrehold response.
Other mechanisms such as synaptic suppression,
potentiation, and plasticity will likely not show up di-
rectly in STRF measurements because these nonlinear
effects typically become fully active following a long
delay, which would significantly exceed the required
timing relationship between stimulus feature and re-
sponse. However, such long-term changes in neuronal
efficacy are analogous to changing the neuron’s effective
operating regime and could therefore be probed by
recording STRFs during a before and after paradigm.

Future studies will need to address the types of bio-
physical mechanisms and neuronal circuitries underlying
specific linear or nonlinear relationships between sound

structure and RF organization. Although the simplest
way to do this is to identify changes in STRF organi-
zation with stimulus operating conditions, there are a
number of benefits to be gained by adopting other
complementary approaches. In the visual system, for
instance, intracellular recordings have been used to
parse out the synaptic mechanisms underlying visual
feature sensitivities and RF formation in the thalamic
input layers of the primary visual cortex (Hirsch et al.
1998; Bringuier et al. 1999; Anderson et al. 2000; Ferster
and Miller 2000). These have been complemented by
computational neuronal modeling studies aimed at
identifying nonlinear mechanisms and the underlying
circuitry behind orientation selectivity, contrast invari-
ant tuning, and other nonlinear phenomena in the pri-
mary visual cortex. It is likely that similar approaches
would be equally fruitful in the auditory system, pro-
viding a theoretical framework to develop specific cod-
ing hypothesis and paradigms, which could then be
tested experimentally.

7 Conclusion

Receptive mapping techniques using noise analysis and
STRF measurements have provided various conceptual
advances in our understanding of spectrotemporal
feature preferences and the transformation of these
across various stages of the ascending auditory system.
As auditory circuits in mammals and other species are
probed in more detail with complex stimuli, it is likely
that the fine details of the different functional transfor-
mations will be identified. In particular, STRF ap-
proaches will play a role in the analysis of spectrotem-
poral features of the transformation that could
otherwise not be probed directly with simple stimuli.

Fig. 8. Linear and nonlinear spectrotempo-
ral integration revealed with STRF analysis.
Neurons with approximately linear SRF
produce identical STRFs under a variety of
stimulus conditions, assuming that equal
amounts of energy are presented within its
integrating area. Here, neurons were tested
with moving ripple and ripple noise stimuli of
equal energy in the cat auditory midbrain
(Escabı́ and Schreiner 2002). Neuron 1
exhibits a highly significant STRF with
similar magnitudes for both sounds, showing
that the neuron is efficiently driven by the
sound modulation in both stimuli. Therefore,
the neuron behaves approximately as ex-
pected for a linear neuron. By comparison,
neuron 2 responds only to the structured
dynamic ripple sounds and is shut off by the
random energy modulations in the ripple
noise. This effect shows that high-order
properties of the stimulus can significantly
modify the operating properties of the neu-
ron. (Adapted with permission from
J. Neurosci; Escabi and Schreiner 2002)

360



As for classical stimulus–response characteristics,
STRF methods are not sufficient characterizations in
themselves, since either of these two approaches fails to
fully explain the other. STRFs, however, offer some
benefits for measuring neuronal sensitivities to broad-
band sounds and other complex stimuli including nat-
ural sounds. As is evident from recent STRF studies,
auditory STRF measurements can be strongly depen-
dent on the spectrotemporal characteristics of probe
sound. Future studies will therefore require the devel-
opment of sounds and methods that can fully exploit the
processing complexity of the entire sensory network.
Natural sounds and other complex broadband sounds
developed for STRF analysis can partly achieve this by
recruiting excitatory and inhibitory inputs across the
extent of the sensory epithelium and by activating non-
linear mechanisms that are not fully active with simpler
narrowband stimuli.

The auditory STRF is a powerful tool for identifying
some of the neuronal dynamics and nonlinear phe-
nomena underlying spectrotemporal integration in the
auditory pathway. However, because natural environ-
mental sounds require an extensive number of spectral
and temporal parameters to fully describe them, and
because auditory neurons exhibit a number of intricate
nonlinearities to these stimulus components, it is un-
likely that any one tool or approach – including STRF-
based methods – will provide the key to understanding
the neuronal representation of complex sounds. Ulti-
mately, the biological system itself and the structure in
complex environmental sounds constrain the types of
analysis techniques that we can use, and each approach
will have its own set of advantages and limitations. As
such, future endeavors to study the neuronal basis for
complex sound analysis will likely require hybrid ap-
proaches and sounds to parse out the processing mech-
anisms and the neuronal circuitry underlying behavior
and perception.
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