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The auditory system of humans and animals must process
information from sounds that dynamically vary along multiple
stimulus dimensions, including time, frequency, and intensity.
Therefore, to understand neuronal mechanisms underlying
acoustic processing in the central auditory pathway, it is es-
sential to characterize how spectral and temporal acoustic
dimensions are jointly processed by the brain. We use acoustic
signals with a structurally rich time-varying spectrum to study
linear and nonlinear spectrotemporal interactions in the central
nucleus of the inferior colliculus (ICC). Our stimuli, the dynamic
moving ripple (DMR) and ripple noise (RN), allow us to system-
atically characterize response attributes with the spectrotem-
poral receptive field (STRF) methods to a rich and dynamic

stimulus ensemble. Theoretically, we expect that STRFs de-
rived with DMR and RN would be identical for a linear integrat-
ing neuron, and we find that !60% of ICC neurons meet this
basic requirement. We find that the remaining neurons are
distinctly nonlinear; these could either respond selectively to
DMR or produce no STRFs despite selective activation to
spectrotemporal acoustic attributes. Our findings delineate
rules for spectrotemporal integration in the ICC that cannot be
accounted for by conventional linear–energy integration
models.
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The central nucleus of the inferior colliculus (ICC) is an obliga-
tory station in the lemniscal auditory system that receives con-
vergent inputs from numerous brainstem structures and sends its
highly processed outputs to the auditory thalamus and, subse-
quently, to the primary auditory cortex. Neurons in the ICC are
sensitive to systematic manipulations of temporal, spectral, bin-
aural, and intensity stimulus attributes (Rees and Møller, 1983,
1987; Schreiner et al., 1983; Langner and Schreiner, 1988; Schre-
iner and Langner, 1988; Irvine and Gao, 1990; Kuwada et al.,
1997; Ramachandran et al., 1999; Krishna and Semple, 2000).
These properties have been studied extensively with pure tones,
modulated tones, and noise stimuli; however, the overall capabil-
ities of the ICC for processing dynamic, spectrally complex acous-
tic stimuli remain unknown. Clearly, because natural sounds have
structurally rich acoustic spectra and can simultaneously vary
along spectral, temporal, intensity, and aural acoustic dimensions,
it is essential to understand how these are jointly processed and
represented within the ICC.

The concept of a stimulus–response function or receptive field
(RF) is a mathematical construct that describes the stimulus
features that are encoded by a sensory neuron. A widely used RF
description that measures the response of a neuron to pure tones

of varying frequency and sound pressure level (SPL) is the
frequency-tuning curve (FTC; Schreiner and Langner, 1988;
Nelken et al., 1997; Ramachandran et al., 1999). Although this
descriptor continues to be important, it cannot characterize the
dynamic behavior of a neuron in response to an arbitrary, spec-
trally complex, time-varying stimulus. Consequently, secondary
analyses are often used that measure the ability of a neuron to
respond to other stimulus aspects, such as the ability to follow
successively presented stimuli of different rates (Rees and Møller,
1983, 1987; Schreiner et al., 1983; Møller and Rees, 1986; Langner
and Schreiner, 1988; Eggermont, 1999; Krishna and Semple, 2000).

Recently, the use of reverse correlation techniques to estimate
the spectrotemporal receptive field (STRF) in the auditory sys-
tem (Aersten et al., 1980; Yeshurun et al., 1985; Eggermont, 1993;
Nelken et al., 1997; de Charms et al., 1998; Klein et al., 2000;
Theunissen et al., 2000; Depireux et al., 2001; Miller et al., 2001,
2002) has allowed scientists to overcome some of the practical
limitations posed by conventional auditory RFs and the stimuli
used to derive them (e.g., pure tones and modulated tones). The
STRF describes the stimulus–response function of an auditory
neuron along both the spectral and temporal acoustic dimensions,
to a rich stimulus ensemble, and makes no assumptions about
independence of spectral and temporal response attributes.

Most RF methods, including the STRF procedure, operate
under the assumption that the system under investigation inte-
grates information, be it acoustic or visual, in an approximately
linear manner. This requires that the spiking output of a sensory
neuron be described as a linear or quasilinear function of its
inputs. Although this is often a reasonable assumption, it may not
always hold. For instance, direct STRF (referred to as spatiotem-
poral receptive field for visual neurons) approaches are readily
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applicable for simple cells in the primary visual cortex (Jones and
Palmer, 1987; DeAngelis et al., 1993, 1999; Victor and Purpura,
1998; Anzai et al., 1999; Reich et al., 2000) but fail for visual
complex cells and neurons outside of VI (Emerson et al., 1987;
Szulborski and Palmer, 1990; Livingstone et al., 2001). Other
stimulus-dependent limitations are observed for sensory neurons
in acoustically specialized animals, where central sensory neurons
are often highly nonlinear and specifically tuned to behaviorally
relevant vocalizations (Suga and Jen, 1976; Suga, et al., 1978;
Margoliash, 1983; Doupe, 1997; Portfors and Wenstrup, 1999;
Theunissen et al., 2000).

Theoretically, the STRF procedure requires the use of white
noise as a probing stimulus. Practically, however, because sensory
neurons in central stations respond to a limited range of spectro-
temporal (spatiotemporal) modulations and are often inhibited by
white noise, it is necessary to synthesize acoustic or visual se-
quences that are optimized for any particular station (de Charms
et al., 1998; Klein et al., 2000). Often this is achieved with
randomly arranged spectrotemporal tone pips in the auditory
system (de Charms et al., 1998; Theunissen et al., 2000) and
spatiotemporally interleaved bars or spots of light in the visual
system (Emerson et al., 1987; DeAngelis et al., 1993, 1999; Anzai
et al., 1999; Reich et al., 2000). Recently, some of the stimulus-
dependent limitations associated with such stimuli have been
overcome with the use of natural sounds (Theunissen et al., 2000)
in the avian auditory cortex homolog.

In this study, we recorded single-unit activity from neurons in
the ICC of cats in response to dynamic spectrotemporally com-
plex stimulus sequences. Our synthetic stimuli, the dynamic mov-
ing ripple (DMR) and ripple noise (RN), are designed to strin-
gently satisfy a number of theoretical requirements for use with
the reverse correlation STRF methods. Furthermore, these
sounds share various properties with natural sounds that allow us
to overcome some of the practical limitations of white noise,
randomly interleaved tone pips, and other synthetic reverse cor-
relation stimuli. Compared with natural signals, these stimuli
offer the advantage that they can be parametrically manipulated,
allowing for a systematic assessment of nonlinear response char-
acteristics within the ICC. Our findings demonstrate the presence
of distinct spectrotemporal nonlinearities in the ICC and identify
possible mechanisms used for complex sound analysis, source
segregation, and signal detection.

MATERIALS AND METHODS
Surgical preparation
Cats were initially anesthetized with a mixture of ketamine HCl (10
mg/kg) and acepromazine (0.28 mg/kg, i.m.). After an intravenous
infusion line was inserted, a surgical state of anesthesia was induced with
!30 mg/kg Nembutal and maintained throughout the surgery with
supplements. Body temperature was measured with a rectal probe and
maintained with a heating pad at !37.5°C. An incision was made in the
intercartilaginous area of the trachea, and a tracheotomy tube was
inserted. After performing a craniotomy, the ICC was exposed by remov-
ing the overlying cerebrum and part of the bony tentorium using a dorsal
approach. On completion of the surgery, the animal was maintained in an
areflexive state of anesthesia via continuous infusion of ketamine (2–4
mg ! kg "1 ! h "1) and diazepam (0.4–1 mg ! kg "1 ! h "1) in lactated Ring-
er’s solution (1–4 mg ! kg "1 ! h "1). The state of the animal was moni-
tored (heart rate, breathing rate, temperature, and periodically checked
reflexes) throughout the experiment, and the infusion rate was adjusted
according to physiological criteria. Every 12 hr, the cat received an
injection of dexamethasone (0.14 mg/kg, s.c.) to prevent brain edema and
atropine to reduce salivation (0.04 mg ! kg "1 ! d "1, s.c.). All surgical
methods and experiment procedures followed National Institutes of
Health and US Department of Agriculture guidelines and were approved

by the committee on animal research of the University of California, San
Francisco.

Neuronal recording
Data were obtained from n # 81 single units in the central nucleus of the
inferior colliculus of three anesthetized cats. One or two closely spaced
parylene-coated tungsten microelectrodes (Microprobe Inc., Potomac,
MD; 1–3 M$ at 1 kHz) were advanced with a hydraulic microdrive
(David Kopf Instruments, Tujunga, CA). Action potential traces were
recorded onto a digital audiotape (CDAT16; Cygnus Technologies, Del-
aware Water Gap, PA) at a sampling rate of 24.0 kHz (41.7 !sec
resolution) for off-line analysis. Off-line analysis consisted of digital
bandpass filtering (0.3–10 kHz) and individually spike sorting the action
potential traces using a Bayesian spike-sorting algorithm (Lewicki, 1994).

Electrode penetration trajectories were at !20–30° relative to the
sagittal plane. Electrodes were initially advanced through the external
nucleus and onto the central nucleus while audiovisually determining
single neuron and multiunit characteristic frequencies (CFs). The bound-
ary between the external and central nucleus of the inferior colliculus
(IC) was confirmed physiologically (Merzenich and Reid, 1974) by a
reversal or discontinuity in the CF trend and by monotonically increasing
CFs as a function of depth (over a range of !1–20 kHz and !1.5–5.0 mm
relative to the surface of the IC), consistent with the central nucleus. All
electrode recordings throughout the remainder of the experiment were
taken from this physiologically defined region. Except for the depth
and CF constraints, recording locations were randomly distributed
within the ICC.

Acoustic stimuli
RN and DMR stimulus waveforms were designed on a digital computer
using the MATLAB (Mathworks) programming environment. The spec-
trotemporal envelopes shown in Figure 1C,D define the energy modula-
tions, in time and frequency, that are used to modulate a bank of
sinusoidal carriers of frequencies fk. As with natural signals, the envelope
of these sounds is time-varying and probes spectral and temporal neu-
ronal response preferences. Furthermore, analogous to various classes of
natural signals (Fig. 1 A,B), these sounds have unique short-term statistics
(Fig. 2 D,E) and yet their long-term statistics are identical (Fig. 2D,E, far
right; see Stimulus correlation statistics). Therefore, both sounds satisfy
the necessary requirement for use with the reverse correlation procedure
that we use to estimate auditory spectrotemporal receptive fields (see
Spectrotemporal receptive field).

Dynamic moving ripple envelope. The DMR envelope is designed as a
dynamic sinusoidal grating on a octave frequency and decibel amplitude
axis. Two parameters defined the DMR envelope: the instantaneous
ripple density, $(t), defines the number of spectral peaks per octave at a
given time instant; and Fm(t) defines the instantaneous modulation rate.
The DMR spectrotemporal envelope is expressed as:

SDMR%t, Xk& " M/2 ! sin'2#$%t&Xk $ (%t&), (1)

where M # 30 or 45 is the modulation depth of the envelope in decibels,
Xk # log2( fk/f1) is the octave frequency axis relative to the lowest
stimulus frequency ( f1 # 500 Hz), and ((t) # *0

t Fm(%)d% controls the
time-varying temporal modulation rate, Fm(t). Spectral [$(t)] and tem-
poral [Fm(t)] parameters are independent and slowly time-varying ran-
dom processes (maximum rates of change, 1.5 Hz for Fm and 3.0 Hz for
$). The time rate of change of both parameters was heuristically chosen
so that they coincide with the observed range of values for similar
acoustic features in speech and vocalizations (Greenberg, 1998). To
guarantee that the stimulus space was covered in a statistically unbiased
manner, both parameters were designed with uniformly (flat) distributed
amplitudes in the intervals 0–4 cycles per octave for $ and "350 to + 350
Hz for Fm.

The time-varying stimulus parameters were generated in the MAT-
LAB programming environment. First, the parameters were generated
as a random sequence of normally distributed samples (randn function in
MATLAB) using a sampling rate of 3 Hz for Fm(t) and 6 Hz for $(t).
These sequences had maximum frequency contents of 1.5 and 3 Hz,
respectively (because the maximum signal frequency is half of the
sampling frequency). To generate the acoustic sound waveforms at a
sampling rate of 44.1 kHz (Eq. 4) it was necessary to resample both of the
parameter signals to an equivalent sampling rate. Therefore, we up-
sampled both signals to 44.1 kHz using a cubic interpolation procedure
(interp1 function in MATLAB; “cubic” option; upsampling factor,
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14,700 for modulation rate and 7350 for ripple density). Next we needed
to convert the parameter amplitudes from a normal to a uniform distri-
bution so that the probability of occurrence of each parameter is statis-
tically unbiased within the selected intervals. This normalization was
performed with the error function:

erf% x& " 2/!#"
0

x

e"t2dt.

This function converts normally distributed amplitudes to uniformly
distributed amplitudes over the interval "1 to + 1 and a subsequent
linear rescaling of the amplitudes to the selected interval. This operation
had only a subtle effect on the spectrum of these signals and is necessary
to guarantee that the signal parameters are statistically unbiased (flat
distribution) within their predefined range.

Ripple noise envelope. The RN envelope is first generated as a linear
superposition of L # 16 independently chosen DMR envelopes,
SDMRl

(t, Xk):

S! RN%t, Xk& "
1
!L#

l#1

L

SDMRl%t, Xk&, (2)

where the sum is normalized so that the SDs of the RN and DMR are
identical. Although this guaranteed that the average contrast of the
DMR and RN envelopes be the same (i.e., identical SD), the RN
amplitude distribution had long tails and resembled a Gaussian distribu-
tion, whereas the DMR envelope is approximately uniform and confined
to the interval ["M/2, M/2]. Instances at the high- and low-intensity tails
of the distribution of the RN envelope can therefore potentially activate
undesirable intensity- and contrast-dependent nonlinearities. We over-
came this possibility by compressing the RN envelope so that its ampli-
tude statistics resemble those of the DMR. The compressed RN envelope
is given by:

SRN%t, Xk& " f 'S! RN%t, Xk&), (3)

where f(x) # M/2 ! erf(x/&DMR) and erf(!) is the error function. This
envelope covers a relative intensity range of ["M/2, "M/2] dB as for the
DMR envelope. This procedure allows us to isolate spectrotemporal
nonlinearities from intensity- or contrast-dependent ones. A second
concern was that the erf(!) function significantly distorts the RN envelope
by introducing high-frequency envelope modulation components, and
this in turn could compromise experimental results. We found, both
analytically (data not shown) and through simulation, that the ripple
spectrum and spectrotemporal autocorrelation (see Fig. 2 D,E, far right;
shown for compressed RN) of the uncompressed and compressed RN
were in close agreement (2.1% rms error for both the ripple spectrum
and autocorrelation).

Acoustic waveform. From the DMR and RN spectrotemporal enve-
lopes, the acoustic sound pressure waveforms, s(t), are constructed by
modulating L # 230 sinusoidal carriers that are added together:

s%t& " #
k#1

L

SLin%t, Xk& ! sin%2#fkt $ 'k&, (4)

where 'k is a randomly chosen phase (0 –2#), which gives s(t) a noise-like
character, and SLin(t, Xk) is a transformed version of the DMR or RN
envelopes that describes the amplitude modulations in linear amplitude
units. The linear envelope is bounded between 10 "M/20 and 1. It is
related to the decibel envelopes by (here we use SdB in place of SDMR and
SRN):

SLin%t, Xk& " 10
SdB%t, Xk&"M/2

20 . (5)

Frequency carriers are geometrically spaced at a resolution of 43 carriers
per octave: fk # ( ! fk " 1 (( # 1.01617) over a range of 5.32 octaves
(500–20,000 Hz). Although the resultant power spectrum is not flat, this
guarantees that the primary sensory epithelium is uniformly excited and
equal energy is provided per unit octave.

Sound presentation. All recordings were made with the animal in a
sound-shielded chamber (IAC, Bronx, NY), with stimuli delivered via a
closed, binaural speaker system (electrostatic diaphragms from Stax).
Single neurons or clusters of neurons were initially isolated audiovisually

by presenting pure tones, white noise, or both. FTCs were derived in two
of the three experiments with a pseudorandom sequence of pure tones
presented at 15 intensities and 45 geometrically spaced frequencies. In
one experiment, rate–level functions were measured with the RN stim-
ulus as a function of SPL and contrast. After these initial tests, DMR and
RN stimuli were presented binaurally with an independent sound se-
quence for each ear. The DMR stimulus was presented for 10 –20 min,
followed by 10–18 min (full length presented for !95% of the recording
sites; identical stimuli for all experiments) of the RN at !30–70 dB/
carrier greater than the neuron response threshold (as determined by the
FTC or rate–level functions). Because the RN and DMR stimuli are
each composed of 230 sinusoid carriers, the effective SPLs were 10 !
log10(230) # 23.6 dB greater than these values (i.e., !53–93 dB greater
than threshold; SPL range, 75 , 19 dB SPL, 64 , 19 dB/one-third octave,
or 51 , 19 dB/carrier). Both RN and DMR were presented at identical
intensities and contrast so that they covered an identical range of ampli-
tudes and fall well within the intensity response area of the neuron.
Sixteen neurons were also tested with a short 5 sec segment of the DMR
and RN that was presented 40 consecutive times. This was used to
construct response rastergrams for each stimulus (see Fig. 10). Finally,
for six neurons that did not respond to the RN, the DMR stimulus was
again presented at the end of the recording session to verify that the
given neurons were still responsive and to verify the stability of the
electrode placement.

Stimulus correlation statistics
The long-term and instantaneous spectrotemporal correlation statistics
of the RN and DMR stimulus constitute an essential aspect of the
stimulus design and the experimental approach. These were evaluated in
closed form and rigorously tested via simulation. Only a brief account is
provided.

A spectrotemporal Gaussian window, wi(t, X ), of SD &x # 0.5 octaves
and &t # 5, 10, or 20 msec and centroid about t # ti was used to localize
the RN or DMR spectrotemporal envelope, S(t, X ). The instantaneous
spectrotemporal autocorrelation function was obtained by evaluating the
localized autocorrelation:

Rss%%, )$ti& " E'S%t, X&wi%t, X&S%t * %, X * )&wi%t * %, X * )&), (6)

where the expectation operator, E[!], is taken with respect to time, t, and
the spectral distance variable, X [Eqs. 1, 3 are substituted for S(t, X )].
The variable ti corresponds to the time instant when the autocorrelation
is evaluated, and % and ) correspond to the temporal lag and spectral
displacement, respectively.

In closed form the solutions for the RN and DMR are given by:

RDMR%%, )& " &DMR
2 ! cos%2#$i) $ 2#Fm, i%& ! Rw w%%, )& (7)

RRN%%, )& " '&RN
2 ! sinc%2$Max)& ! sinc%2FMax%& $ e%%, )&) ! Rw w%%, )&, (8)

where &DMR
2 # M 2/8 and &RN

2 # M 2/12 are the variance of the DMR and
RN, respectively, and Rww(%, )) is the autocorrelation function of the
Gaussian window (which is itself a Gaussian window of SD -2&x and
-2&t). The parameters $i # $(ti) and Fm,i # Fm(ti) are the instanta-
neous DMR parameters evaluated at ti. Because the stimulus parameters
dynamically vary with time at a nominal rate of 3 and 1.5 Hz (Fig. 2A,B),
the DMR instantaneous spectrotemporal autocorrelation likewise varies
with time (Fig. 2 D). Accordingly, its spectrotemporal envelope is non-
stationary at these time scales. The term e(%, )) is a spectrotemporal
noise term, and the parameters $Max # 4 cycles per octave and FMax
#350 Hz are the maximum ripple parameters.

The long-term autocorrelation for both sounds was obtained by per-
forming a time average of the instantaneous autocorrelation: RSS (%, )) #
E[RSS (%, )$ti)] (E[!] is now evaluated with respect to ti). The autocorre-
lation is identical in form for both sounds:

RDMR%%, )& " RRN%%, )& " &S
2 ! sinc%2$Max)& ! sinc%2FMax%& ! Rw w%%, )&. (9)

The autocorrelations only differ in the SD by a multiplicative factor of
20% (RN, &S # &RN # M-12 dB; DMR, &S # &DMR # M-8 dB).

Spectrotemporal receptive field
STRFs are computed by averaging the pre-event spectrotemporal enve-
lope. For a sequence of N neural events at times, tn (sampled at 41.7 !sec
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resolution), contralateral and ipsilateral STRFs are obtained as [here we
use SdB(t, Xk) in place of SDMR(t, Xk) or SRN(t, Xk)]:

STRF%%, Xk& " 1/%&s
2 ! T& ! # nSdB%tn * %, Xk&, (10)

where T is the experimental recording time in seconds, % is the temporal
delay of the stimulus relative to the neural event time (0–100 msec), and
&S

2 is the variance of the decibel spectrotemporal envelope for the DMR
or RN. During the DMR and RN stimulus presentation, independent
sound sequences were binaurally presented to each animal. This allowed
us to independently estimate the contralateral and ipsilateral STRFs by
replacing the contralateral and ipsilateral spectrotemporal envelopes into
Equation 10 (Marmarelis and Naka, 1974).

Stimulus envelopes were sampled at 4.0 kilosamples/sec (temporal)
and 43 samples per octave (spectral). The STRF is formally given in units
of spikes per second per decibel. We use a rate-normalized version of the
STRF, STRFr(%, Xk) # &s ! STRF(%, Xk), which corresponds to the
average driven output produced at time 0, in units of spikes per second,
for the average differential stimulus (decibels) presented within the
receptive field of the neuron.

Statistically significant STRF
We devised a procedure for measuring the statistically significant STRF
by considering a null condition in which N randomly chosen spikes are
put through Equation 10. This procedure consists of adding random
sound waveforms to construct a control STRF from which statistical
significance can be determined. Solutions for this procedure were de-
rived analytically in closed form (data not shown). The distribution of
amplitudes for the control STRF quickly approached a normal distribu-
tion (with as little as N # 50 spikes). Therefore, a simplification was made
in which we determined the two-tailed probability of exceeding a thresh-
old relative to the control STRF under the assumption of a normal
distribution. The statistically significant portion of the STRF ( p .0.002)
is obtained by keeping all values of the STRF that exceed 3.09 SD of the
control noise STRF and setting all other values to 0. Analytically this is
expressed as $&S

2 ! T ! STRF(%, ))/-N$ / 3.09 ! &s. No smoothing was
performed before or after thresholding. This procedure was tested
against the analytically derived solutions, and we found that actual
significance values were always slightly smaller (e.g., actual significance
value of p . 0.0019 for N # 50).

To determine relative significance of STRFs, on an equal spike basis,
we further evaluated significance by recomputing all STRFs using 100
action potentials and determining all pixel values that exceeded the p .
0.002 confidence intervals. For these pixel values, the average and max-
imum signal-to-noise ratio (SNR) was computed. Average and peak
SNRs were computed as:

SNRMean " !E'STRF100
2 )/&100

2

and

SNRMax " max%$STRF100$&/&100 ,

where &100 is the SD of the noise control STRF derived for 100 random
spikes. Thus, for any given pixel, the SNR determines the number of SDs
by which STRF pixels stand out above the noise.

Null hypothesis
Response nonlinearities are tested against the expected results for an
ideal linear model neuron. Given that the long-term spectrotemporal
autocorrelation functions for the DMR and RN are identical, it follows
that for a purely linear neuron STRFDMR # STRFRN (for proof, see
Appendix A). Significant differences between the RN and DMR STRFs
can be attributed to response nonlinearities. To quantify response dif-
ferences, we use the statistically significant portion of the STRFs and use
this to compute a number of response metrics for the DMR and RN:
similarity index, rate and magnitude disparity index, and the phase-
locking index (see below).

Quantifying DMR and RN response differences
Neural responses for DMR and RN were compared in three complemen-
tary ways. First the STRF similarity index (SI; DeAngelis et al., 1999;
Reich et al., 2000) was used to quantify shape differences between
STRFDMR and STRFRN. Using the STRF pixel values that exceeded the
statistical significance threshold of p . 0.002 for either condition, we
treated the STRFs as vectors (including significant contralateral and

ipsilateral pixels). The vectorized RFs were then used to evaluate the
similarity index:

SI "
0RFDMR, RFRN1

%RFDMR% ! %RFRN% , (11)

where RFDMR and RFRN are the significant STRFs, 0!, !1 is the vector
inner product, and %!% designates the vector norm operator. The SI is
numerically identical to the Pearson correlation coefficient.

We devised two metrics to evaluate differences in firing rate and
driven activity independently of STRF shape. First we computed the rate
disparity index (RDI):

RDI " s !&'rDMR

rRN
(s

* 1)! 100%, (12)

where s # sign(rDMR " rRN), and the mean spike rates for each condition
are rDMR and rRN. The magnitude of the RDI is numerically equivalent
to the percent change in firing rate between DMR and RN. Its sign tells
us which condition, DMR or RN, had a higher firing rate (+ , DMR; ",
RN). To quantify differences in driven activity, we used a third metric,
the magnitude disparity index (MDI). The MDI is identical in form to
the RDI, where the mean firing rates, rDMR and rRN, are replaced by the
rate-normalized STRF energies, EDMR and ERN, for the corresponding
conditions. Here the STRF energy is computed as:

E " !#
k#1

L "STRFr%%, Xk&2d%. (13)

Because the response of the neuron could be fractionally distributed
between the contralateral and ipsilateral ears, the energy of the contra-
and ipsi-STRFs was measured independently, and the cumulative sum
was taken as:

ETotal " !Ec
2 $ Ei

2 ,

where Ec and Ei are the contra- and ipsi-STRF energies. The STRF
energy measures phase-locked activity (units of spikes per second) and is
equivalent to the average phase-locked output for a linear integrating
neuron (for proof, see Appendix B).

Phase-locking index
The phase-locking index (PLI) quantifies the ability of a neuron to phase
lock to the spectrotemporal envelope. This metric is obtained by dividing
the peak-to-peak STRF amplitude (in spikes per second) by the mean
spike rate, r:

PLI "
max%&S ! STRF& * min%&S ! STRF&

r !
1
2

, (14)

and normalizing this quantity by a theoretically derived factor, 2, that
corresponds to the theoretical maximum peak-to-peak rate-normalized
STRF amplitude (confining this index to the range of 0–1). For the
DMR, 2 # -8, and for the RN, 2 # -12 (for proof, see Appendix C).

Frequency domain analysis: ripple transfer function and
conditioned response histogram
As an alternative to the STRF, we further evaluated neuronal response
preferences to DMR and RN in the frequency domain. These ap-
proaches are useful, because they can be used to quantify neural re-
sponses as a function of ripple frequency and temporal modulation rate
parameters.

The ripple transfer function (RTF) is one such descriptor. It is
obtained directly from the STRF by performing a two-dimensional
Fourier transform on the statistically significant STRF ( p . 0.002),
discarding the phase, and keeping the magnitude (see Fig. 5A,B). From
the RTF, the best ripple density and best modulation rate parameters
were determined for all phase-locking neurons. These are chosen by the
location in the magnitude response with the peak amplitude. In instances
in which two responses are observed (for negative and positive modula-
tion rates), the secondary response was selected only if its response
magnitude exceeded 50% of the maximum response magnitude. Positive
(negative) modulation rates designate downward (upward)-going stimu-
lus features; however, because the STRF is a time-reversed version of
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best stimulus of the neuron, this convention is flipped for the neuron and
its RTF (positive, upward sweep; negative, downward sweep).

Although this approach was successfully applied for many neurons,
other neurons did not show statistically significant STRFs; therefore, it
was impossible to estimate their RTFs directly. We therefore approxi-
mate the probability distribution function of observing a given set of
parameters given a spike at time tn, P(Fm, $$tn), by performing a spike-
triggered average with respect to the time-varying DMR parameters,
$(t) and Fm(t):

Pkl " #
n#1

N

I'k2Fm + Fm%tn& + %k $ 1&2Fm) ! I'l2$ + $%tn& + %l $ 1&2$),

(15)

where Pkl is the discrete version of P(Fm, $$tn), and I[!] is the identity
function. The identity function takes a value of unity whenever the
condition inside its argument is satisfied. Otherwise, it assumes a value of
0. Thus for any given bin of Pkl, this conditioned response histogram
(CRH) is incremented by + 1 if and only if the instantaneous parameters,
Fm(tn) and $(tn), fall within the required intervals, k2Fm + Fm(tn) + (k
+ 1)2Fm and l2$ + $(tn) + (l + 1)2$, at the time of the neuronal spike,
tn (see Fig. 5C,D). Bin width resolutions of 2Fm # 15–35 Hz and 2$ #
0.2–0.4 cycles per octave were used. The exact position used to estimate
the parameters relative to the neuronal spike time, tn, did not alter the
resulting histogram (tested for a time lag of 0–50 msec), because
the parameters vary at a slow rate (1.5 and 3 Hz) compared with the
integration time of ICC neurons (usually tens of milliseconds).

As for single units, it was also useful to characterize population
responses in the frequency domain, and we therefore extended these
methods to include population statistics. By averaging the RTFs of
individual neurons, we estimated the population ripple transfer function
(pRTF) for those neurons with significant STRFs. To avoid biasing the
pRTF because of systematic differences in firing strength, the RTFs of
individual neurons were equally weighted so that the cumulative area of
each was exactly 1.

For neurons that did not produce statistically significant STRFs, a
modified approach was applied. We normalized the CRH of each neuron
so that its cumulative sum was exactly 1. An average was then taken over
the entire population, thereby producing the “population” CRH
(pCRH). To facilitate comparisons, the pCRH was interpolated using the
interp2 function (spline option) in MATLAB to identical resolution as
for pRTF.

RESULTS
We studied 81 single neurons with the intent of understanding
how dynamic spectrotemporal signals are processed within the
central nucleus of the inferior colliculus. Specifically, we address
whether single neurons integrate spectrotemporal information
according to a linear integration model and whether dynamic
stimulus aspects significantly affect neuronal encoding. Our com-
plex stimuli constitute an integral part of the experimental pro-
tocol, and we fully characterize several pertinent properties of the
stimulus ensembles. By design, both test sounds have identical
average statistics and, therefore, equally sample the relevant
spectrotemporal stimulus dimensions for this study. As a first-
order test of evaluating spectrotemporal response nonlinearities,
we compute and compare the spectrotemporal receptive field for
each sound type. We also characterize higher-order response
attributes that are not directly accessible with the STRF
descriptor.

Stimulus statistics: average versus dynamic
spectrotemporal characteristics of the dynamic
moving ripple and ripple noise
To test the possibility that individual auditory neurons in the ICC
are selective for structural features prevalent in natural sounds
(Fig. 1A,B), complex broadband stimuli (Fig. 1C,D) were de-
signed that allow us to systematically identify nonlinear process-
ing capabilities of auditory neurons. These stimuli fulfill a num-

ber of theoretical and ecological constraints: first, both sounds
were designed to stringently meet a number of necessary require-
ments for use with the STRF. Second, both sounds incorporate a
number of pertinent acoustic stimulus attributes that are preva-
lent in various natural signals [e.g., spectral energy peaks, fre-
quency modulation (FM) sweeps, and temporal modulations] and
that determine important perceptual qualities (Plomp, 1970,
1983; Van Veen and Houtgast, 1983).

The DMR stimulus (Fig. 1C) is an extension of the rippled
spectrum noise used to characterize spectral and temporal re-
sponse properties in the ferret and cat auditory cortex (Schreiner
and Calhoun, 1994; Kowalski et al., 1996; Klein et al., 2000). This
sound is constructed so that its spectrotemporal envelope is
dynamic and coherently modulated (“structured”) in time and
frequency. As for speech and animal vocalizations (Fig. 1A), the
DMR has strong short-time spectrotemporal correlations. These
are determined by two independent parameters that vary ran-
domly in time: the temporal modulation rate, Fm(t), and ripple
density, $(t) (see Materials and Methods; Figs. 1C, and 2). The
temporal modulation parameter determines the number of onsets
and offsets per unit time (units of hertz) (Fig. 1C, top right). At any
given time, the DMR sound produces a sinusoidal energy excita-
tion pattern along the sensory epithelium, where the number of
peaks per octave frequency is determined by the ripple density at
that instant (Fig. 1C, top right). To efficiently excite neurons in the
range characteristic for vocalizations, these parameters continu-
ously vary at a nominal rate of 3 Hz (ripple density) (Fig. 2A) and
1.5 Hz (temporal modulation rate) (Fig. 2B) (in speech, for
instance, similar features change at a rate of !2–8 Hz; Green-
berg, 1998).

Figure 1. Synthetic sound sequence used for reverse correlation analysis
(C, D) and some corresponding natural sound counterparts (A, kitten
vocalizations; B, babbling brook). The DMR (C) is designed to mimic
spectral profiles created by formants (spectral energy peaks) and temporal
modulations in speech production and animal vocalizations. The ripple
density parameter, $( t), corresponds to the number of energy peaks
(cycles per octave) along the spectral axis at time t. The temporal
modulation rate, Fm( t), describes the repetition rate of the envelope in
hertz. The second stimulus, the RN (D), has noise-like properties that
uniformly cover the ripple dimensions. The DMR and RN are shown for
a maximum temporal modulation rate of 70 Hz, although a value of 350
Hz was used for the experiments.
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By averaging 16 independently chosen DMR envelopes, we
designed a second stimulus, the RN. This sound is locally weakly
correlated (“unstructured”), resembling background and environ-
mental noises such as wind and rain (Fig. 1B). Visually, its
spectrotemporal envelope (Fig. 1D) has a noisy profile both along
time and along the spectral axis and lacks coherent modulations
as present in the DMR and many vocalization sounds (Voss and
Clarke, 1975; Attias and Schreiner, 1998; Nelken et al., 1999;
Theunissen et al., 2000).

To characterize and compare the instantaneous versus the
average behavior of these stimuli and their suitability for the
reverse correlation method, the spectrotemporal autocorrelation
function was evaluated for each stimulus. Dynamic properties
were evaluated over short intervals of 10, 20, and 40 msec, which
are comparable with integration times for ICC neurons. Global
correlation statistics were evaluated for the ensemble as a whole
(consisting of a 20 min continuous sound segment; see Materials
and Methods). Both the local (shown for 10 msec analysis inter-
val) and global spectrotemporal autocorrelations are depicted in
Figure 2D,E.

The local autocorrelation depicts the spectrotemporal modula-
tions that are present at a given time instant over a 10 msec
segment. For the DMR stimulus, these take the form of tapered
oscillations at a characteristic ripple density, modulation rate, and
frequency sweep direction (Fig. 2D). Comparing the DMR and
RN, it is clear that the local stimulus statistics are markedly
different. Although the DMR has strong local correlations over
the defined 10 msec intervals, the RN lacks any definitive spectral
and temporal oscillations (Fig. 2E). Accordingly, its local auto-
correlation is qualitatively similar at all time instants, consisting
of a narrow central peak with a noisy surround. Therefore, the
RN appears to be stationary or locally time-invariant. By com-

parison, the DMR has local envelope statistics that are dynamic;
that is, they continuously vary with time.

By averaging the instantaneous autocorrelation function over
all 10 msec time instants, it is possible to characterize the average
statistics for the DMR and RN stimulus ensembles, which are
identical (Fig. 2D,E, far right). In both cases, the average spectro-
temporal autocorrelation assumes a narrow impulse-like charac-
ter, which is the essential requirement for deriving receptive
fields with the reverse correlation method (Eggermont, 1993;
Klein et al., 2000).

Linear spectrotemporal receptive fields for DMR
and RN
Neuronal data were evaluated by computing the STRF for neu-
rons in the ICC and comparing neuronal responses to the spec-
trotemporally structured (DMR) and unstructured (RN) sounds.
The STRF is a mathematical construct that describes the inte-
grating area of the neuron along time and along the sensory
epithelium (i.e., the frequency axis) and that depicts the spectro-
temporal arrangement of neuronal excitation (red domains) and
inhibition (blue domains). Figure 3 illustrates the spike-triggered
average procedure we use to derive STRFs in response to DMR
and RN. The STRF procedure requires that the probing stimulus
have an unbiased modulation spectrum (both in time and along
the sensory epithelium) or, equivalently, an impulsive spectro-
temporal autocorrelation function that fully covers the physiolog-
ically relevant limits. Both the RN and DMR were designed with
this constraint in mind; by limiting the temporal modulation rate
to 350 Hz and the ripple density to 4 cycles per octave, we should
be able to characterize 90–95% of the neurons in the ICC
(Langner and Schreiner, 1988; Krishna and Semple, 2000) with-
out biasing their STRFs.

Figure 2. Stimulus dynamics and spectrotempo-
ral correlation statistics of the DMR and RN.
The DMR parameter trajectories $( t) (A; ripple
density, 0–4 cycles per octave) and Fm( t) (B;
modulation rate, "350–350 Hz) are shown for a
short 15 sec segment. The spectrotemporal pa-
rameters efficiently cover the ripple space (C;
shown for the 15 sec segments of A, B). The
instantaneous correlation function of the DMR
( D) and RN ( E) are shown for three distinct
time instants, t1–t3 [D; lef t to right, $(t1 ) # 1 cycle
per octave; Fm(t1 ) # 0 Hz; $(t2 ) # 2 cycles per
octave; Fm(t2 ) # 150 Hz; $(t3 ) # 0.15 cycles per
octave; Fm(t3 ) # "60 Hz]. The RN instanta-
neous correlation function consists of a narrow
central peak and a noisy surround (E). The
global autocorrelation is identical for both
sounds, consisting of an impulse-like central peak
of width 3 msec and one-fourth octave (D, E, far
right).
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This essential property, which makes the RN and DMR stimuli
suitable for reverse correlation, also permits the identification of
spectrotemporal response nonlinearities. Given that both stimuli
have identical low-order statistics (matched in intensity, contrast,
and average envelope modulations), it is expected that a linear
integrating neuron would have an average neural response that is
similar for the RN and DMR conditions. That is, because both
the RN and DMR stringently satisfy the necessary requirements
for reverse correlation, we expect that STRFDMR # STRFRN if
the neuron behaves as a linear integrator (see Materials and
Methods and Appendix B for proof). By comparing DMR and
RN responses, we find that 60% (n # 49) of the neurons in our
ICC sample met this requirement (Fig. 4). For reference, pure
tone FTCs are shown alongside the RN and DMR STRFs when
available (Fig. 4A,D). A red bar designates the mean sound
pressure level (per one-third octave) for DMR and RN.

Neurons in our sample showed a variety of preference to
stimulus patterns in the DMR and RN, including suppressive side
bands, obliquely oriented excitatory or inhibitory regions, and
distinct temporal response profiles (e.g., on–off, off–on, and
off–on–off). Typically, excitatory and inhibitory STRF features
were consistent between DMR and RN, although in some cases,
inhibitory features were less pronounced for the RN (Fig. 4E,F).
DMR and RN firing rates were generally high (mean spike rate,
11.2 spikes/sec for DMR and 11.8 spikes/sec for RN) and signif-
icantly correlated [correlation coefficient, 0.85 , 0.08 (mean ,
SE)] for this subset of neurons. Likewise, all neurons had com-
parable STRF energies. The neuron of Figure 4B,C, for instance,

had a spike rate of 34.0 spikes/sec for the DMR and 36.2 spikes/
sec for the RN (difference, 6%) and comparable STRF energies
(EDMR, 2.6 spikes/sec; ERN, 3.0 spikes/sec; difference, 13%). The
presence of well defined, statistically significant STRFs ( p .
0.002) for both DMR and RN indicates that neurons efficiently
phase locked to the stimulus spectrotemporal envelope. To dis-
tinguish these functional properties from those of other neurons
in our sample, we refer to these as type I responses.

Frequency domain RF analysis
Complementary to the STRF, we also evaluated neuronal data in
the frequency domain to extract physiologically meaningful pa-
rameters from the STRF and to describe neuronal preferences in
terms of low-pass and bandpass filtering (Depireux et al., 2001;
Klein et al., 2000).

First, we converted the STRF to an RTF (Fig. 5A,B). The RTF
maps a the preferences of a neuron as a function of the temporal
(modulation rate) and spectral (ripple density) stimulus parame-
ters (see Materials and Methods). Whether a neuron integrates
spectral or temporal information in a low-pass or bandpass man-
ner depends strongly on the spectrotemporal relationship be-
tween neural excitation and inhibition in its STRF. For instance,
the neuron of Figure 4B,C, has an on–off temporal response
pattern; therefore, its RTF resembles a bandpass filter along the
temporal modulation axis (Fig. 6A) that is centered at a best
temporal modulation rate (bTM) of 45 Hz. Likewise, along the
spectral axis, this neuron has a weak but significant inhibitory
region alongside an excitatory region. Therefore its response as a
function of ripple density also has a bandpass response profile
with the dominant response peak centered at a best ripple density
(bRD) of 0.6 cycles per octave. Neurons that lack interleaved
patterns of excitatory (on) and inhibitory (off) subfields in their
STRFs generally have low-pass response characteristics (Fig.
4I,J) along the spectral and temporal dimensions. The STRF of
this example is marked by an off–on–off temporal response pat-
tern, but its spectral STRF patterns lack interleaved excitatory and
inhibitory subfields. Accordingly, its RTF (Fig. 6B) shows a band-
pass response pattern in time (bTM, 200 Hz) and a low-pass
response pattern along the spectral axis (bRD, 0 cycles per octave).

In a second related approach, a CRH was used to evaluate
neuronal selectivity by tabulating the number of action potentials
as a function of ripple parameters (see Materials and Methods).
Unlike the STRF and RTF, this method accumulates the stimulus
parameters, as opposed to the averaging stimulus waveforms, and
is therefore insensitive to spike timing jitter. Figure 5C,D illus-
trates this approach. Generally, we find that RTF and CRH are in
close agreement (Fig. 6). However, the CRH also reflects non-
specific activity, that is, action potentials that fall outside the
dominant RTF boundaries and presumably do not contribute to
the construction of the STRF (Fig. 6A,B).

Nonlinear spectrotemporal receptive fields for DMR
and RN
One question addressed in this study is whether ICC neurons
require specific acoustic features to be efficiently activated and
whether these features can be identified using the STRF method.
One reason why it may be difficult to identify the preferred
acoustic features of a neuron using a direct approach is because
conventional reverse correlation stimuli (such as the RN or spec-
trotemporal tone pips) seldom contain isolated sound patterns
during a typical recording period. As an example, the DMR
stimulus has pronounced energy peaks and FM sweeps that

Figure 3. Spike-triggered average and the STRF. At each instant of an
action potential, the pre-event sound segment (up to 100 msec before
spiking) is extracted and averaged for the entire stimulus ensemble. Red
regions indicate stimulus patterns that were likely to be present whenever
a neural response occurred at delay of 0. Blue indicates stimulus patterns
that tended to be off at a moment before spike initiation. Functionally,
these are interpreted as excitation (red) and inhibition (blue).
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appear in isolation in its spectrotemporal envelope (Fig. 1C).
These same features are much more subtle in the RN (Fig. 1D),
because they are superimposed with other components. How do
such stimulus characteristics affect the ability of a neuron to
respond, and which of these stimuli is better suited for identifying
neuronal preferences in central auditory stations? Presumably, if
a neuron exhibits substantial nonlinearities, significant differences
could be expected between DMR and RN.

Not all studied neurons responded equally well to the DMR
and RN. A small but significant (14%; n # 11) subset of neurons
responded selectively to the DMR stimulus (Fig. 7; type II neu-
rons). In general, type II neurons had low firing rates to the DMR
and little or no response to the RN. Average firing rates for either
stimuli were significantly lower than for type I responders (mean
DMR, 0.61 spikes/sec; t test, p .0.003; mean RN, 0.13 spikes/sec;
t test, p . 0.0025). Surprisingly, despite the low spike rates,
STRFs derived with the DMR were highly significant ( p + 0.002)
and exceptionally clean.

Figure 7 depicts typical responses for these neurons. Some
neurons (Fig. 7B–E) responded to both the DMR (0.24 and 1.4
spikes/sec) and the RN (0.14 and 0.2 spikes/sec) sounds, although
their DMR firing rate was significantly stronger. DMR STRFs
were highly significant ( p . 0.002), with well defined excitatory
and inhibitory subfields. However, the RN STRFs of these type II
neurons were weak, with no distinguishable boundaries and ex-
citatory and inhibitory subregions. Furthermore, the DMR STRF
energy was 725% (Fig. 7B,C; EDMR, 0.100 spikes/sec; ERN, 0.012
spikes/sec) and 1280% (Fig. 7D,E; EDMR, 0.276 spikes/sec; ERN,
0.020) stronger, respectively, than for RN. Although these neu-
rons did respond weakly to RN, other neurons responded exclu-
sively to the DMR (Fig. 7G,H,J,K). Again, these neurons had
extremely low spike rates (0.45 and 0.11 spikes/sec, respectively)
to the DMR and no response to the RN (0 spikes). These STRFs
were constructed using 276 (Fig. 7G) and 139 (Fig. 7J) spikes for

Figure 5. Frequency domain response analysis. The auditory STRF (A;
shown for RN) is used to compute the RTF (B; shown for RN) by
applying a two-dimensional Fourier transform. The RTF depicts time-
locked energy in the neural response as a function of temporal modula-
tion rate, Fm , and ripple density, $. Red indicates parameter combina-
tions that evoked a strong time-locked response, and blue indicates a weak
response. The CRH (D) characterizes nonlinear neuronal responses that
do not show up in the STRF. For each neural event, the spectral and
temporal DMR parameters, $(tk ) and Fm(tk ), are determined at the time
instance of the neural spike, tk. The values of $ and Fm are then used to
increment the corresponding bin in the histogram by + 1 (D).

Figure 4. Spectrotemporal receptive fields
of neurons that responded to DMR and
RN. Neurons were tested with pure tones
(A, D, lef t column), DMR (B, E, G, I, middle
column), and the RN (C, F, H, J, right col-
umn) stimuli (individual neurons are shown
by row). Frequency-tuning curves depict the
frequency versus intensity response area of
a neuron (A, D). The red horizontal line
designates the mean stimulus level (per
one-third octave) used for RN and DMR.
STRFs have similar shapes (similarity in-
dex: B, C, 0.94; E, F, 0.76; G, H, 0.77; I, J,
0.7) and strength (magnitude disparity in-
dex: B, C, "13%; E, F, 178%; G, H, 74%; I,
J, 4%; rate disparity index: B, C, "6%; E, F,
35%; G, H, 24%; I, J, "53%). To facilitate
comparisons, STRFs are shown on identical
color scales for RN and DMR. STRFs for
each neuron are drawn on individually cho-
sen spectral and temporal scales. Significant
patterns of the STRF are denoted by red
contours ( p . 0.002 contour).
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the DMR over a 10 and 20 min recording period, respectively.
Nevertheless, their STRFs are as noise-free as those of type I
responders that typically had thousands to tens of thousands of
action potentials.

Interestingly, response characteristics for type II neurons are
consistent with the idea that they are highly selective for some of
the DMR stimulus features. The fact that we can compute highly
significant DMR STRFs from very few spikes further suggests
that the acoustic features leading to spike initiation must be
precisely aligned in time and frequency; otherwise, STRFs would
not accurately build up. To determine whether this is so, we
recomputed all DMR STRFs using a subset of 100 randomly
chosen action potentials for each neuron and determined the
mean and maximum SNRs of those pixel values that exceeded a
significance criterion of p . 0.002 (see Materials and Methods).
The SNR of these conditioned DMR STRFs was approximately
twice as strong for type II neurons (average maximum SNR, 8.7
for type II vs 4.0 for type I; paired t test, p .3.5 3 10"5; average
mean SNR, 4.7 for type II vs 2.8 for type I; paired t test p .
0.003). This suggests that the spectrotemporal waveforms added
to compute the STRF are more consistent from spike to spike for
type II neurons compared with type I neurons. Consequently,
type II neurons are highly sensitive for particular stimulus fea-

tures in the DMR stimulus, resulting in exceptionally clean
STRFs that can be obtained with very few action potentials.
Response specificity is also reflected in the CRH for these neu-
rons. Compared with type I responses, CRHs for type II re-
sponses show highly localized peaks (Fig. 6C,D, far right) and lack
nonspecific activity. Together, the low firing rates, high response
specificity to the DMR, and unresponsiveness to RN demonstrate
that these neurons are extremely nonlinear and highly selective
for isolated spectrotemporal sound patterns.

It may be argued that the seemingly low spike rates and sparse
responses of these neurons are simply attributed to stimulus levels
near or below the response threshold of the neuron. We tested for
this possibility in 6 of the 11 neurons by computing FTCs with
pure tones (Fig. 7A,F,I). The FTCs are shown alongside DMR
and RN STRFs, with a red line depicting the mean intensity per
one-third octave during DMR and RN stimulation (mean , SE
SPL per one-third octave, 69 , 9 dB). In all cases, the DMR and
RN intensity operating points were well above the response
threshold of the neuron, thus arguing against potential threshold-
ing effects. Many of these neurons had bandwidths exceeding
one-third octave. Therefore, the actual energy exceeded the one-
third octave estimate by up to 12 dB (Fig. 7G). For the five
neurons for which frequency-tuning curves were not available, it
is unlikely that these were near or less than the threshold, because
DMR and RN were presented for these at moderately loud SPLs
(58, 58, 78, 78, and 88 dB/one-third octave, respectively).

STRF shape, energy, and firing rate differences
between DMR and RN
Differences in response activity between DMR and RN for type
I and II responses were quantified with three metrics to indepen-
dently assess STRF shape, mean firing rate, and STRF energy
differences. STRF shape differences were quantified with the
STRF SI (DeAngelis et al., 1999; Reich et al., 2000). The SI
assumes values between "1 and 1. Values of 1 indicate that the
STRFs have identical shapes. Values near "1 indicate that the
STRFs have identical shapes but are of opposite polarity, and SI
values near 0 occur only for STRFs that have nothing in common.
The RDI and the STRF MDI quantify the percent change in
mean firing rate and STRF energy between the RN and DMR.
Values of 0 for the RDI indicate that the mean firing rates are
identical (rDMR # rRN), whereas values /0 indicate that rDMR /
rRN. Values .0 indicate that rDMR . rRN. The magnitude of the
RDI is numerically equivalent to the percent difference between
rDMR and rRN. The MDI is identical in form to the RDI, where
the STRF energies, EDMR and ERN, are now substituted for the
mean firing rate, rDMR and rRN, respectively. This metric there-
fore characterizes phase-locked or driven activity as depicted by
the STRF.

In extreme scenarios, neurons either responded equally well to
both sounds or responded only to the DMR. This was evident
from both the similarity index statistics and the rate and magni-
tude disparity index. Figure 8B shows the similarity index distri-
bution for all neurons that had significant STRFs for the DMR or
RN stimulus conditions or both. The distribution of SI values is
bimodally distributed. Most neurons (n # 49) had similar DMR
and RN STRFs and therefore high SI values, /0.5 (mean SI,
0.75). These were classified as type I neurons. The remaining
neurons (n # 11) had SI values of .0.5. Of these, two neurons
had values of SI that were nearly 0.5 (0.48 and 0.49) (Fig. 7D,E),
and six neurons had SI values that were identically 0 (Fig.
7G,H,J,K). Neurons in the latter subset responded to the DMR

Figure 6. Neuronal preferences determined with the RTF (lef t column)
and CRH (right column) shown for the neurons of Figures 4B,I and 7J,G
(A–D, respectively). The RTF and CRH depict the spectrotemporal
frequency combinations (modulation frequency and ripple density) that
preferentially activate a neuron. These can show either a low-pass or
bandpass tuning profile along the temporal modulation or ripple density
axis. Generally, neuronal tuning is similar for the RTF and CRH.
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sound and produced statistically significant STRFs but did not
respond to the RN sound. Therefore, although most neurons had
similar integration areas for RN and DMR, significant differences
in STRF shape were usually attributed to improper activation by
RN. Consequently such neurons were classified as type II
responses.

Although the SI index statistics are consistent with the ob-
served response types of Figures 4 and 7, they do not tell us
anything about the driven and average activity to these stimuli.
The rate and STRF magnitude disparity index corroborate the
results of Figures 4 and 7. Although most neurons (n # 49; type I)
had RDI and MDI centered about 0 ($RDI$.500% and $MDI$.
500%; mean MDI, 49.1%; mean, 2.7%), a large subset of neurons
(n # 11; type II) had values for either of these metrics that
exceeded + 500% (mean MDI, 896%; mean RDI, 712%; cluster
verified post hoc, link tree cluster analysis) (Fig. 8A). Thus, the
average activity or phase-locked activity of these neurons tended
to be significantly higher for the DMR stimulus, consistent with
type II response characteristics and the examples of Figure 7.
Five of these neurons had MDI values between 500 and 1000%.
For three neurons, the RDI values were .500%, and observable
response differences manifested themselves only as a significant
change in driven activity (MDI / 500%) (Fig. 7B,C). An addi-
tional six neurons had very large values of RDI and MDI, because
they responded to the DMR stimulus but produced zero spikes
for the RN sound (Fig. 7G,H,J,K). These are shown collectively
as a single point centered about MDI of + 1000% and RDI of
+ 1000%.

STRF construction and the effects of phase locking
A basic requirement for computing the STRF is that the action
potential linearly time lock or phase lock to the stimulus spectro-
temporal envelope. Sinusoidal amplitude modulation studies have
demonstrated that many ICC neurons phase lock to the stimulus

modulation waveform (Rees and Møller, 1983, 1987; Møller and
Rees, 1986; Langner and Schreiner, 1988; Krishna and Semple,
2000). Accordingly, a large percentage of neurons in this study
phase locked to the spectrotemporal envelope and consistently
produced statistically reliable STRFs (n # 61 of 81).

The remaining neurons (n # 20 of 81), failed to produce
statistically reliable STRFs ( p . 0.002) with a distinct spectro-
temporal patterning (Fig. 9), despite a significant overall firing
rate (mean firing rate, 7.5 spikes/sec). We labeled these neurons
type III. One possible explanation is that these neurons were
spontaneously firing and did not respond in a time-dependent
manner to the DMR and RN. One of a number of possible
alternatives is that these neurons responded selectively to energy
fluctuations of the DMR and RN but did not linearly phase lock
to their spectrotemporal envelope. Therefore, waveform averag-
ing to estimate neuronal receptive fields would be of little use.

To test this possibility, we computed the CRH for these neu-
rons. This procedure allows us to test whether type III neurons
respond selectively to complex sound attributes even if they do
not posses the necessary timing precision in their stimulus–
response alignment for producing STRFs. The CRH of all of
these neurons revealed strong responses to particular stimulus
parameter combinations (Fig. 9C,F,H) despite the lack of linear
time locking to the spectrotemporal envelope (resulting in no
STRF in Fig. 9B,E or a very weak STRF in Fig. 9G). Thus, the
responses of these neurons do not linearly follow the fast spec-
trotemporal modulations of the stimulus envelope (up to 350 Hz)
but were able to track very slow changes of the stimulus param-
eters (1.5 Hz for the temporal modulation rate and 3 Hz for the
ripple density) with changes in firing rate. On the basis of the
STRF and mean firing rate alone, one would conclude that these
neurons are only spontaneously firing without functional conse-
quences for encoding stimulus information. However, the cumu-

Figure 7. Spectrotemporal receptive fields
of neurons that responded specifically to
the DMR sound (B, D, G, J, middle col-
umn) but responded weakly or had no re-
sponse to the RN (C, E, H, K, right column).
Frequency-tuning curves derived with pure
tones are shown for reference (A, F, I, lef t
column). Red lines designate the mean
stimulus level (per one-third octave) used
for DMR and RN. Significant STRF pat-
terns are denoted by red contours. All neu-
rons are shown at distinct spectral and tem-
poral scales.

Escabı́ and Schreiner • Spectrotemporal Sound Analysis in the Auditory Midbrain J. Neurosci., May 15, 2002, 22(10):4114–4131 4123



lative analysis of the stimulus–response relationship reveals that
these neurons do respond selectively to pertinent stimulus param-
eters (Fig. 9C,F,H).

In the few instances in which significant STRFs ( p . 0.002)
were observed (n # 6 of 20) for type III neurons, these were
diffuse and weak (Fig. 9G), despite the fact that the CRH was
strong and tightly tuned (Fig. 9H). For comparison purposes, the
color scale on all STRFs including those of Figures 4 and 7 are
normalized so that the minimum and maximum values corre-
spond to half of the mean firing rate (in the case in which the
STRF amplitude exceeded these limits, the maximum absolute
value of the STRF was used). Most neurons had STRF magni-
tudes that fell below this range of values, although these limits
were often exceeded for neurons with type II responses (as is the
case for all the neurons of Fig. 7). In the case in which the STRFs
are absent, this observation indicates that the sound waveforms
that were used to construct the STRF were not phase-aligned and,
therefore, do not add constructively. In the case of type I re-
sponses, the sound waveforms are presumably moderately
aligned, whereas for type II, they are tightly aligned (allowing the
peak-to-peak rate of the STRF to exceed the mean firing rate of
the neuron).

Examples depicting the different phase-locking scenarios for
the three neural types are depicted in Figure 10B–D for a short
5 sec segment of the DMR stimulus. The type III neuron (Fig.
10D; same neuron as in Fig. 9A–C) had an elevated firing rate but
showed no obvious correspondence between the occurrence of
action potentials and the DMR stimulus spectrotemporal pattern
(Fig. 10A, far right). The type I neuron of Figure 10B (same
neuron as in Fig. 4A–C) had a high spike rate and a phasic
response raster. Similarly, the type II neuron of Figure 10C (same
neuron as in Fig. 7F,G) showed precisely aligned phasic response
components; however, this neuron had a low spike rate to the
DMR and no spontaneous background activity. By comparing its
STRF (Fig. 7G), its response raster (Fig. 10C, far right), and the
DMR stimulus sound pattern (Fig. 10A, far right), it is evident
that the neuron responds specifically if the spectrotemporal sound
patterns closely match the STRF of the neuron. This level of
temporal specificity is less pronounced for the type I neuron (Fig.
10B) and absent for the type III neuron (Fig. 10D).

We quantified the phase-locking abilities of all neurons by
computing the PLI (see Materials and Methods; Fig. 10E) for the
DMR stimulus. This metric can assume values between 0 and 1
(observed range, 0–0.75), where 0 indicates no linear phase
locking and 1 indicates maximal linear phase locking. Results for
the population are consistent with the examples of Figures 4, 7,
and 9. Type III neurons, which have no STRFs, had the lowest
PLI values (mean PLI, 0.076 , 0.02; bootstrap p . 0.01 confi-
dence interval; Fig. 9B, 0.028, E, 0.09, G, 0.093), and neurons with
type II responses had the highest values (Fig. 7B, 0.46, D, 0.42, G,
0.64, J, 0.65). As postulated for type II responses, high PLI values
(mean, 0.50 , 0.13; bootstrap p . 0.01 confidence interval)
suggest that the sound waveforms used to construct STRFs add
constructively and are tightly aligned. In contrast, type I respond-
ers had intermediate PLI values (Fig. 4B, 0.22, E, 0.20, G, 0.14, I,
0.13; mean, 0.24 , 0.04; bootstrap p . 0.01 confidence interval),
indicating that sound waveforms are moderately aligned.

Spectrotemporal filtering statistics
As noted previously, neuronal preferences to features of the
DMR and RN depend strongly on the spectrotemporal arrange-
ment and size of excitatory and inhibitory receptive field regions.
These, in turn, determine the range of spectral and temporal
preferences of each neuron and whether their filtering character-
istics are bandpass or low-pass.

To evaluate the processing capabilities of all neurons and to
characterize any systematic differences among type I–III re-
sponses, we measured the bRD and bTM parameters of each
neuron (Fig. 11A). Because most neurons (77 of 81, !95%)
responded symmetrically to upward-going (positive temporal
modulation) and downward-going (negative temporal modula-
tion) ripples, two values of the best parameters were extracted
(one for each quadrant of the RTF; i.e., one for the positive and
one for the negative modulation rate value). For type III re-
sponses, these were estimated directly from their CRH. bTM and
bRD show a distinct covariation for time-locked responses (types
I and II). There is a strong negative correlation between the
absolute magnitude of bTM and bRD (type I, r # "0.6 , 0.06
bootstrap SE; p .1 3 10"5; type II, r # "0.5 , 0.1 bootstrap SE;
p . 1 3 10"5). Evidently, time-locking neurons that prefer fast
temporal modulations also prefer stimuli with broad spectral
features, and neurons that prefer slow temporal modulations can
respond efficiently to stimuli with narrow or broad spectral fea-
tures. This trend was significantly different for type III responses,

Figure 8. Response statistics comparing the DMR versus the RN. The
MDI and RDI quantify differences in mean firing rate and driven activity
for the DMR and RN (A). Type II neurons have RDI and MDI values
that exceed the 500% contour. STRF shape differences are quantified
with the SI, which usually takes values from 0 (not similar) to 1 (very
similar). The population similarity index distribution (B) is bimodally
distributed, with the majority of neurons falling at !0.7.
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in which the absolute magnitude of bTM and bRD showed no
correlation (r # 0.1 , 0.16 bootstrap SE; p / 0.78).

We characterized the overall spectrotemporal filtering capabil-
ity of the ICC by averaging the DMR RTFs of individual neurons
to estimate the pRTF (see Materials and Methods). The compos-
ite pRTF depicts a clear trend in the spectrotemporal filtering
profile. Neurons with type I and II responses had similar response
profiles (pRTF correlation coefficient, 0.765 , 0.015; p . 0.01
bootstrap confidence interval) in which spectral resolution ap-
pears to be traded for temporal resolution (Fig. 11B,C). At low
modulation rates, filtering profiles extended to intermediate rip-
ple densities (up to two cycles per octave); however, at high
modulation rates, neurons are sensitive only to low ripple fre-
quencies. Overall, spectral filtering is low-pass, whereas temporal
filtering characteristics are bandpass. This was true for both type
I and II responses; however, the pRTF of type II responses is
more compact, as evident from the 95th percentile contours (Fig.
11B,C, solid line). By direct comparison, the filtering profile of
type III responses (Fig. 11D) is diffused and shows no systematic
patterns as for type I and II responses (pRTF correlation coeffi-
cients: I vs III, 0.44 , 0.016; II vs III, 0.2695 , 0.015; p . 0.01
bootstrap confidence interval). Accordingly, spectrotemporal fil-
tering characteristics differ significantly between neurons with
strong and weak phase locking.

DISCUSSION
Neurons in the central auditory system respond selectively to both
spectral and temporal stimulus attributes (Rees and Møller, 1983,
1987; Schreiner et al., 1983; Langner and Schreiner, 1988; Schre-
iner and Langner, 1988; Nelken et al., 1997; Eggermont, 1999;
Ramachandran et al., 1999; Krishna and Semple, 2000). Although
this is well described for narrow-band stimuli, clicks, and modu-

lated tones, only a few studies have addressed how these acoustic
dimensions are jointly processed by the brain. This is of interest,
because natural sounds are composed of both spectral and tem-
poral sound components, and because, in general, the response to
complex stimulus ensembles cannot be extrapolated directly from
the neuronal responses to simpler sounds. Our data demonstrate
that !60% of neural responses to complex auditory stimuli in the
ICC are consistent with a linear integration model (type I neu-
rons). However, we also identified conditions in which this model
fails at fully describing neural responses. This result is true for
type II and III neurons. Type II neurons phase lock well and
respond selectively to spectrotemporal stimulus features. How-
ever, these neurons are not efficiently activated with the RN
stimulus. In contrast, type III neurons do not phase lock tightly to
the stimulus envelope, but they respond selectively to both spec-
tral and temporal stimulus parameters.

Recent studies have demonstrated the usefulness of the STRF
procedure for studying neural processing of complex sounds in
the auditory cortex (de Charms et al., 1998; Klein et al., 2000;
Miller et al., 2002) and its avian homolog (Theunissen et al.,
2000). They have shown that it is indeed possible to approximate
the stimulus–response function of some central auditory neurons
as linear functions of their inputs. As for the related visual STRF,
the auditory STRF can be used to identify the spectrotemporal
features of the stimulus that a neuron prefers (de Charms et al.,
1998). Because this method describes neural processing in terms
of time and the sensory epithelium receptor surface, it has be-
come a valuable and intuitive experimental tool. Despite its
general utility, nonlinear aspects of neural integration are often
difficult to identify and cannot be fully accounted for with the
STRF (Young, 1998; Theunissen et al., 2000). Our results build

Figure 9. Neurons for which the STRF
procedure fails. STRFs derived with DMR
(B, E, G, middle column) show no signifi-
cant spectrotemporal patterns ( p .0.002)
and, therefore, provide little information
about stimulus features being encoded.
Pure tone tuning curves are shown for ref-
erence (A, D, lef t column). Spectrotempo-
ral feature selectivity is established with
the conditioned response histogram (C,
F, H, right column), which always shows a
tuned response not observed directly
from the STRF or the RTF.
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on those findings, suggesting that the STRF is useful in various
respects, but it does not fully account for all response nonlineari-
ties. Therefore, to systematically identify nonlinear aspects of
processing, complementary approaches and acoustic stimuli must
be examined. For instance, approaches that extend the STRF
method by performing a second-order reverse correlation (with
respect to the spectrotemporal envelope) could be used. These
methods, however, generally require a substantial amount of data
and can easily fail, especially if the types of nonlinearities are not
compatible with the approach (i.e., they must be of even order
with respect to the envelope of the sound). Furthermore, results
from any such methods may depend strongly on the stimulus
ensemble used (Theunissen et al., 2000).

As outlined in the introductory remarks, limitations encoun-
tered with the STRF technique can be either stimulus-dependent
or methodological in nature. Stimulus-dependent limitations are
characterized by the inability of a stimulus to efficiently activate
highly nonlinear sensory neurons. For instance, high-level audi-
tory neurons in the avian forebrain in bats and other acoustically
specialized animals exhibit complex nonlinearities and respond
efficiently to acoustic features found in their vocalizations. Such
high-level sensory neurons are likely optimized to analyze acous-
tic features and combinations found in natural signals (Suga and

Jen, 1976; Suga et al., 1978; Margoliash, 1983; Doupe, 1997;
Portfors and Wenstrup, 1999; Theunissen et al., 2000). Therefore,
when these animals are studied using synthetic stimuli, such as
conventional reverse correlation sequences, neural responses are
generally weak, and, consequently, a quantitative evaluation of
the stimulus response function is not possible (Theunissen et al.,
2000). However, by presenting natural stimuli that contain perti-
nent stimulus correlations, some of these limitations can be over-
come (Theunissen et al., 2000).

Our findings in the ICC further demonstrate the importance of
the probing stimulus characteristics and how these may interact
with the sensory system. The fact that significant response differ-
ences exist between DMR and RN is evidence that, for some
neurons, a direct STRF procedure using conventional stimuli may
be insufficient. Neurons with type II responses, for instance,
cannot be characterized with RN stimuli, despite the fact that this
stimulus contains the essential characteristics required to esti-
mate auditory STRFs. The DMR, which is by all accounts a
nontraditional reverse correlation sound, allowed us to character-
ize receptive field of these neurons. These differences suggest
that high-order acoustic features in the DMR efficiently drove
such neurons, whereas RN did not. By simply comparing re-
sponses between DMR and RN, we have therefore taken a

Figure 10. Phase-locking statistics for the DMR
stimulus. A, Left, A 5 sec segment of the DMR
stimulus was presented to each neuron. Raster-
grams (B–D, lef t) show individual response traces
for 40 consecutive presentations for type I (B), II
( C), and III (D) neurons. The occurrence of each
action potential is shown as a single dot (1 msec
resolution). A–C, Far right, Cutout (red) detailing
the stimulus spectrotemporal envelope (A, far
right) and the response rastergrams of each neu-
ron (B–D, far right). E, The PLI measures the
ability of a neuron to phase lock to the spectro-
temporal envelope of a sound. A PLI of 0 indi-
cates minimal linear phase locking, and a PLI of
1 indicates perfect phase locking. PLI distribution
is skewed toward low values (mean PLI, 0.24) but
extends over a broad range of 0–0.75.
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significant step toward identifying some of the acoustic features
that are necessary to efficiently activate such neurons. At the same
time, this comparison allows us to dissociate linear from nonlin-
ear spectrotemporal interactions.

By controlling for multiple stimulus parameters (including SPL,
contrast, and global second-order correlations), we show that
instantaneous correlations of the probing stimulus are essential
for activating some neurons. The DMR stimulus dynamically and
efficiently probes the entire acoustic ripple space by providing
maximal driving force over short periods (Fig. 2). Our finding
that some neurons require strong time-limited correlations to
activate them is not unexpected, because ICC neurons integrate
stimulus information over a restricted temporal extent of less than
!50 msec. Similar processing principles are likely operative for
natural signals (Theunissen et al., 2000); however, the large
number of degrees of freedom necessary to describe natural
stimuli makes their identification difficult.

Neurons with type II responses consistently produced highly
significant STRFs despite low spike rates for the DMR. In fact,
when the level of significance was compared for an equal number
of action potentials, STRFs of neurons with type II responses
were more significant and had a higher signal-to-noise ratio than
for type I. Therefore, spectrotemporal acoustic features in the
DMR were added effectively during the construction of these
STRFs. This finding indicates that type II neurons precisely
phase lock to particular stimulus features of the DMR, as re-
flected by the higher phase-locking index values (Fig. 10). These
observations support the idea that type II neurons selectively
respond to particular stimulus features within the DMR, whereas
type I neurons integrate stimulus information in a quasilinear
manner.

Although we cannot speak directly about the exact mechanisms
underlying these nonlinear response characteristics, the general
nature of the observed effect points to several possibilities. For
instance, active engagement of inhibitory and excitatory neuronal

inputs combined with intracellular thresholding in the ICC (Ku-
wada et al., 1997) could account for the low spike rates and
observed differences between DMR and RN in type II neurons. If
the inhibitory inputs are sufficiently strong, broadband stimula-
tion would significantly reduce firing rates, because stimulus en-
ergy would almost always overlap inhibitory RF domains. This is
especially true for RN, because it has a short but constant corre-
lation width of !3 msec and one-fourth octave. This possibility is
supported by the fact that the fraction of inhibitory STRF energy
was larger for type II responses than type I (mean , SE, 40 , 6
vs 36 , 8%; paired t test, p . 0.05). Even if subthreshold
summation is strictly linear, a high intracellular reversal potential
would drastically reduce overall spike rates. Under such condi-
tions, the neuron would be most likely to fire only when the
stimulus modulations precisely overlap the excitatory and inhib-
itory RF of the neuron. Such active engagement of excitation and
disengagement of inhibition would allow the intracellular poten-
tial of the neuron to reach the spike initiation threshold. The
strong instantaneous spectrotemporal correlations of the DMR
stimulus could, under such circumstances, provide the necessary
driving force to selectively activate and deactivate excitatory and
inhibitory inputs. Preliminary modeling results (data not shown)
are consistent with our findings and suggest that such mechanisms
could serve as a general basis for selectivity enhancement, similar
to feature selectivity mechanisms observed in other species and
modalities (Casseday et al., 1994; Moore and Nelson, 1998; Brin-
guier et al., 1999).

Methodological limitations of the STRF are evident for type
III neurons that, despite significant firing rates, showed no signif-
icant STRFs. We overcame these limitations by devising an
alternate functional descriptor, the CRH. This consisted of per-
forming a spike-triggered histogram with respect to the time-
varying DMR parameters, as opposed to the stimulus spectro-
temporal envelope. The fact that we do not obtain STRFs despite
selective activation to both spectral and temporal attributes

Figure 11. pRTFs and best ripple parameter sta-
tistics. A, Scatter plot of the bRD and bTM for
the observed neural responses (triangles, type I;
circles, type II; squares, type III). The pRTF of
type I ( B), II ( C), and III ( D) neurons depicts the
filtering profiles of each neural response type.
Black contours designate the 95th percentile
interval (boundaries that account for 95% of
the area under the pRT).
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points to several mechanisms. On the one hand, dominant even-
order nonlinearity would render the STRF method useless, be-
cause this technique only characterizes suitable projections from
odd-order nonlinearities. For example, a simple squaring operation
would cause a linear neuron to phase lock to both stimulus onsets
and offsets, the average of which is precisely zero. Therefore, the
average pre-event stimulus (i.e., its STRF) would be zero. Such
nonlinearities are well described for complex cells in the primary
visual cortex, which have strong even-order nonlinearities and
consequently do not produce linear spatiotemporal receptive fields
(Emerson et al., 1987; Szulborski and Palmer, 1990). A number of
alternate mechanisms, however, could also produce a similar result.

One such possibility is random spike-timing jitter, a mechanism
likely responsible for loss of temporal synchrony at fast temporal
modulation rates (Epping and Eggermont, 1986; Langner and
Schreiner, 1988; Schulze and Langner, 1997; Krishna and Semple,
2000). If spike-timing jitter is comparable in its time scale with that
of the preferred stimulus feature of the neuron (by as little as half
of the STRF period), the spectrotemporal patterns that are added
during the STRF computation would be randomly out of phase and
would, therefore, not add constructively. This is especially true at
high temporal modulation rates, at which the time scales for neural
integration of fast stimulus features are at the limits of the internal
precision of the spike generation mechanisms (on the order of a
few milliseconds). Under such conditions, a small amount of jitter
would abolish the STRF. If, on the other hand, a neuron prefers
slow temporal modulations, a small amount of temporal jitter
would distort or blur the STRF of the neuron but would not abolish
it in its entirety. This possibility is supported by the fact that bTMs
were significantly higher for neurons with type III responses than
for those with type I and II responses (mean bTM, 190 vs 75 Hz;
paired t test, p .2 3 10"7). Our modeling results (data not shown)
suggest that both of these mechanisms produce results identical in
character to those observed for type III responses.

Although we have chosen to break up our data into function-
ally defined subgroups of neurons, our methods cannot distin-
guish between anatomically defined neural populations (Oliver
and Morest, 1984) and functionally defined neural inputs into the
ICC (Ramachandran et al., 1999). Our findings, however, show
that the ability of a neuron to respond to DMR versus RN is
ultimately reflected in other response properties, such as its
phase-locking ability, its SNR, and even its preferred spectrotem-
poral parameters. Differences in the spectrotemporal filtering
abilities of each neural type were determined from the best
spectral and temporal parameters of each neuron or from the
population transfer functions. Type I and II neurons had similar
spectrotemporal preferences in which the preferred ripple density
and modulation rate showed a strong negative correlation. Fur-
thermore, the range of modulation rates and ripple densities were
more restricted for type II neurons, indicating that the STRFs of
these neurons were typically larger. Type III neurons, by com-
parison, showed no systematic filtering pattern; however, the
observed modulation rates were significantly higher than for type
I or II neurons. These differences in filtering ability argue for
distinct coding strategies within the ICC according to differences
in the spiking output (e.g., the degree of phase locking).

Advances in the STRF mapping techniques using natural
sounds and other naturalistic stimuli (Klein et al., 2000; Theunis-
sen et al., 2000) are providing the means to study complex non-
linearities that are necessary for the brain to efficiently processes
sensory information from the outside world. Our findings delin-
eate rules for spectrotemporal sound processing in the ICC that

cannot be accounted for by linear integration models and that
can, in general, not be characterized alone with narrowband
stimuli, conventional reverse correlation stimuli, and direct STRF
methods. Because of the dynamic spectrotemporal nature of
natural sounds, such processing principles likely play an impor-
tant role for natural sound analysis.

APPENDIX A
Nonlinear response characteristics are tested against the expected
response of an idealized linear neuron. Because the RN and
DMR both have identical autocorrelation functions, a hypothet-
ical linear neuron would produce identical STRFs and RTFs for
these sounds.

To prove this, we consider a multi-input, single-output linear
filter bank (Marmarelis and Naka, 1974) as a model representa-
tion for auditory neuronal filtering. This representation is moti-
vated by the fact that the primary sensory epithelium performs a
spectrotemporal decomposition of incoming sounds, and conse-
quently, all further processing along the auditory system is con-
strained by this output pattern.

The spectrotemporal filter bank model consists of a set of L
octave spaced linear modulation filters, [h1(%), h2(%), . . . , hL(%)],
where hk(%) # STRF(%, Xk) is the impulse response of a linear
filter centered about the frequency band Xk, and % corresponds to
the temporal lag of the filter. The expected firing rate of the
neuron, r(t), is obtained by summing the firing rate contribution
for each of the tonotopically arranged frequency channels:

r%t& " r0 $ #
k#1

L

rk%t&, (16)

where r0 is the mean firing rate of the neuron (zero-order kernel),
and the output of its kth frequency band is given by the convo-
lution integral:

rk%t& " "hk%%&sk%t * %&d% $ ek%t&, (17)

where sk(t) # S(t, Xk) is the modulation input to the kth filter
channel, and ek(t) is a noise term that arises from measurement
error and the internal noise of the neuron. For the nonlinear case,
ek(t) contains the nonlinear response contributions that cannot be
accounted for by the linear description (Klein et al., 2000). For
practical reasons, we assume that ek(t) is statistically independent
of the input, sk(t) and has 0 mean and SD of &ek

.
To compute the STRF from the experiment data, we perform

a cross-correlation between the input and output. For the linear
model neuron, this procedure is expressed as:

E'%r%t& * r0& ! sl%t * &&) " #
k#1

L

E'rk%t& ! sl%t * &&)

" #
k#1

L "E'sk%t * %& ! sl%t * &&) ! hk%%&d%

$ E'ek%t& ! sl%t * &&)

" #
k#1

L "Rss%% * &, Xk * Xl& ! hk%%&d%,

(18)
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where:

E' ! ) " lim
T3 4

"
"T/2

T/2

! dt

is the time average operator, and RSS(%, )) is the stimulus average
spectrotemporal autocorrelation function. For a sufficiently large
recording period, T, the error cross-correlation E[ek(t) ! sl(t " &]
approaches 0, because ek(t) and sl(t) are statistically independent
and both have 0 means. Because the above equation is strictly a
function of the stimulus long-term spectrotemporal autocorrela-
tion function, RSS(%, )), and is independent of the stimulus local
statistics, an idealized linear neuron ought to produce identical
STRFs for both sounds as hypothesized. This is expected, be-
cause the global spectrotemporal autocorrelation is identical for
both stimuli (Eq. 9, Fig. 2).

To show that Equation 18 degenerates into a spike-triggered
average, we consider the impulse-like correlation properties of
the RN and DMR. If the spectrotemporal autocorrelation of the
stimulus has the unique property that it has impulse-like charac-
teristics, that is, RSS(%, )) 5 &S

2 ! ,(%) ! ,()), then the spectrotem-
poral cross-correlation between the stimulus and the output sim-
plifies to:

E'%r%t& * r0& ! sl%t $ &&) " &s
2 ! #

k#1

L ",%% * && ! ,%Xk * Xl& ! hk%%&d%

" &s
2 ! hl%&&, (19)

where &S
2 is to the variance of the spectrotemporal envelope. The

spectrotemporal receptive field for the model neurons is instantly
derived as:

STRF%&, Xl& " hl%&& "
1
&s

2 ! E'%r%t& * r0& ! sl%t * &&). (20)

Therefore, for both RN and DMR, the STRF can be estimated by
performing a cross-correlation between the response of the neu-
ron, r(t), and each of its L inputs, Sk(t), for k # 1, . . . , L. Although
the spectrotemporal correlation of the RN and DMR is not
strictly an impulse (temporal correlation width, !3 msec; spectral
correlation width, one-fourth octave), it is in general significantly
tighter than the spectrotemporal integration areas of !95% of
ICC neurons (Rees and Møller, 1987; Langner and Schreiner,
1988; Schreiner and Langner, 1988; Krishna and Semple, 2000)
and can therefore be approximated as such.

For a spiking neuron with an action potential sequence r(t) #
6i,(t " ti) of N neuronal event times, ti, Equation 20 can be easily
expanded as a spike-triggered average:

h%&, Xl& " 1/%&s
2 ! T& ! #

i#1

L

sl%ti * &&. (21)

In practice, T corresponds to the experimental recording period
(600–1200 sec for these experiments).

Therefore if the grand average spectrotemporal autocorrela-
tion function of the stimulus has impulse-like properties, it is
possible to estimate the STRF of the neuron via Equation 21.
Other stimulus aspects, such as high-order statistics, and stimulus
dynamics have no bearing on this result under the assumption of

quasilinear integration. Both the RN and DMR satisfy the global
correlation requirement and therefore should produce identical
results for a linear integrating neuron.

APPENDIX B
Consider the linear model neuron of Equations 16 and 17, where
the filter for the kth input channel is related to the STRF of the
neuron by hk(%) # STRF(%, Xk). We would like to derive a metric
that quantifies the energy in the response of the neuron that is
captured by the STRF of the neuron. We do this by computing
the expected output SD or, equivalently, the firing rate variance
of the neuron that is predicted by its STRF. The predicted firing
rate variance is expressed as:

&r
2 " E'%r%t& * r0&

2) " #
i#1

L #
k#1

L

E'rj%t& ! rk%t&), (22)

where r(t) is the predicted firing rate of the neuron (Eq. 16), r0 is
the mean firing rate of the neuron, and rk(t) is the predicted
output for the kth filter channel. Substituting Equation 17 into the
expectation of Equation 22 yields:

E'rj%t& ! rk%t&) " E'"sj%t * %1& ! hj%%1&d%1 !"sk%t * %2& ! hk%%2&d%2)

""E'sj%t * %1& ! sk%t * %2&) ! hj%%1& ! hk%%2&d%1d%2

""Rss%%1 * %2, Xj * Xk& ! hj%%1& ! hk%%2&d%1d%2 , (23)

where RSS(%1 " %2, Xj " Xk) # &S
2 ! sinc[2$Max(Xj " Xk)] !

sinc[2FMax(%1 " %2)] is the RN and DMR autocorrelation (Eq. 9).
Given the arguments presented in Appendix A, the autocorrela-
tion function is approximated by a spectrotemporal impulse,
RSS(%1 " %2, Xj " Xk) # &S

2 ! ,(Xj " Xk) ! ,(%1 " %2). Substituting
into Equation 23 yields:

E'rk%t&2) " ""&S
2 ! ,%%1 * %2& ! hk%%1& ! hk%%1&d%1d%2 " &S

2 !"hk%%&2d%,

(24)

for k # j and:

E'rj%t& ! rk%t&) " 0, (25)

for k 7 j. Combining with Equation 22, the firing rate variance
that is captured by the STRF of the neuron is expressed as:

&r
2 " &S

2#
k#1

L "hk%%&2d% " #
k#1

L "STRFr%%, Xk&
2d%. (26)

The predicted firing rate energy, E # &r, is therefore computed
directly from the STRFr by computing its RMS value via Equa-
tion 26.

APPENDIX C
The theoretical maximum peak-to-peak amplitude of the rate-
normalized STRF is obtained by considering perfectly aligned
sound waveforms that add constructively. This theoretical value is
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used as a reference normalization factor for the phase-locking
index. Consider the amplitude normalized STRF:

STRFn "
STRFr%%, Xk&

r "
&s ! STRF%%, Xk&

r

"
1/%&s ! T& ! # nS%tn * %, Xk&

r , (27)

where Equation 10 is substituted for STRF(%, Xk). Because STRF
is described in units of spikes per second, STRFn is unit-less.
Substituting the measured firing rate, r # N/T, we have:

STRFn%%, Xk& "
1
N# nS! %tn * %, Xk&, (28)

where S! # S/&S is a ripple envelope with unit variance. The
maximum peak-to-peak amplitude of S!(t, Xk) is -8 for the DMR,
because the peak-to-peak amplitude of S(t, Xk) is M, and because
&S # M/-8. For the RN, &S # M/-12; therefore, the maximum
peak-to-peak amplitude is -12. The theoretical maximum peak-
to-peak amplitude of STRFn is obtained as:

2 " max%STRFn& * min%STRFn&, (29)

under the assumption that the N spectrotemporal waveforms used
to construct the STRF are perfectly aligned. This yields:

2 " max'1
N# nS!(* min'1

N# nS!(" max%S! & * min%S! & " !8,

(30)
for the DMR and 2 # -12 for the RN.
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agation of visual activity in the synaptic integration field of are 17
neurons. Science 283:695–699.

Casseday JH, Ehrlich D, Covey D (1994) Neural tuning for sound du-
ration. Role of inhibitory mechanisms in the inferior colliculus. Science
264:847–850.

DeAngelis GC, Ohzawa I, Freeman RD (1993) Spatiotemporal organiza-
tion of simple-cell receptive fields in the cat’s striate cortex: II. Linearity
of temporal and spatial summation. J Neurophysiol 69:1118–1135.

DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD (1999) Functional
micro-organization of primary visual cortex: receptive field analysis of
nearby neurons. J Neurosci 19:4046–4064.

de Charms RC, Blake DT, Merzenich MM (1998) Optimizing sound
features for cortical neurons. Science 280:1439–1443.

Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-
temporal response field characterization with dynamic ripples in the
ferret primary auditory cortex. J Neurophysiol 85:1220–1234.

Doupe AJ (1997) Song- and order-selective neurons in the songbird
anterior forebrain and their emergence during vocal development.
J Neurosci 17:1147–1167.

Eggermont JJ (1993) Wiener and Voltera analyses applied to the audi-
tory system. Hear Res 66:177–201.

Eggermont JJ (1999) The magnitude and phase of temporal modulation
transfer functions in cat auditory cortex. J Neurosci 19:2780–2788.

Emerson RC, Citron MC, Vaughn WJ, Klein SA (1987) Nonlinear di-
rectionally selective subunits in complex cells of cat striate cortex.
J Neurophysiol 58:33–65.

Epping WJM, Eggermont JJ (1986) Sensitivity of neurons in the audi-
tory midbrain of the grassfrog to temporal characteristics of sounds. II.
Stimulation with amplitude modulated sound. Hear Res 24:55–72.

Greenberg S (1998) Speaking in shorthand: a syllabic-centric perspective
for understanding pronunciation variation. In: Proceedings of the

ESCA Workshop on Modeling Pronunciation and Variation for Auto-
matic Speech Recognition, pp 47–56. Kekrade, The Netherlands.

Irvine DRF, Gao G (1990) Binaural interaction in high-frequency neu-
rons in the inferior colliculus of the cat. Effects of variations in sound
pressure level on sensitivity to interaural intensity differences. J Neu-
rophysiol 63:570–591.

Jones JP, Palmer LA (1987) The two dimensional spatial structure of
simple receptive fields in cat striate cortex. J Neurophysiol
58:1187–1211.

Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectro-
temporal reverse correlation for the auditory system: optimizing stim-
ulus design. J Comp Neurosci 9:85–111.

Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic
spectra in ferret primary auditory cortex: I. characteristics of single unit
responses to moving ripple spectra. J Neurophysiol 76:3524–3534.

Krishna BS, Semple MN (2000) Auditory temporal processing: re-
sponses to sinusoidally amplitude-modulated tones in the inferior col-
liculus. J Neurophysiol 84:255–273.

Kuwada S, Batra R, Yin TCT, Oliver DL, Haberly LB, Stanford TR
(1997) Intracellular recordings in response to monaural and binaural
stimulation of neurons in the inferior colliculus of the cat. J Neurosci
17:1565–1581.

Langner G, Schreiner CE (1988) Periodicity coding in the inferior col-
liculus of the cat: I. Neuronal mechanisms. J Neurophysiol
60:1799–1822.

Lewicki MS (1994) Bayesian modeling and classification of neural sig-
nals. Neural Comput 6:1005–1029.

Livingstone MS, Pack CC, Born RT (2001) Two-dimensional substruc-
ture of MT receptive fields. Neuron 30:781–793.

Margoliash D (1983) Acoustic parameters underlying the response of
song-specific neurons in the white-crowned sparrow. J Neurosci
3:1039–1057.

Marmarelis PZ, Naka KI (1974) Identification of multi-input biological
systems. IEEE Trans Biomed Eng 21:88–101.

Merzenich MM, Reid MD (1974) Representation of the cochlea within
the inferior colliculus of the cat. Brain Res 77:397–441.

Miller LM, Escabı́ MA, Read HL, Schreiner CE (2001) Functional
convergence of response properties in the auditory thalamocortical
system. Neuron 32:151–160.

Miller LM, Escabı́ MA, Read HL, Schreiner CE (2002) Spectrotempo-
ral receptive fields in the lemniscal auditory thalamus and cortex.
J Neurophysiol 87:516–527.

Møller AR, Rees A (1986) Dynamic properties of the responses of single
neurons in the inferior colliculus of the rat. Hear Res 24:203–215.

Moore CI, Nelson SB (1998) Spatio-temporal subthreshold receptive
fields in the vibrissa representation of rat primary somatosensory
cortex. J Neurophysiol 80:2882–2892.

Nelken I, Kim PJ, Young ED (1997) Linear and nonlinear spectral
integration in type IV neurons in the dorsal cochlear nucleus. II.
Predicting responses with the use of nonlinear models. J Neurophysiol
78:800–811.

Nelken I, Rotman Y, Yosef OB (1999) Responses of auditory-cortex
neurons to structural features of natural sounds. Nature 37:154–157.

Oliver DL, Morest DK (1984) The central nucleus of the inferior col-
liculus in the cat. J Comp Neurol 222:237–274.

Plomp R (1970) Timbre as a multidimensional attribute of complex
tones. In: Frequency analysis and periodicity detection in hearing
(Plomp R, Smoorenburg GF, eds), pp 397–414. Linden, The Nether-
lands: Sijthoff.

Plomp R (1983) The role of modulations in hearing. In: Hearing: phys-
iological bases and psychophysics (Klinke R, Hartmann R, eds), pp
270–276. New York: Springer.

Portfors CV, Wenstrup JJ (1999) Delay-tuned neurons in the inferior
colliculus of the mustached bat: implications for analysis of target
distance. J Neurophysiol 82:1326–1338.

Ramachandran R, Davis KA, May BJ (1999) Single-unit responses in
the inferior colliculus of decerebrate cats: I. Classification based on
frequency response maps. J Neurophysiol 82:152–163.

Rees A, Møller AR (1983) Response of neurons in the inferior colliculus
of the rat to AM and FM tones. Hear Res 10:301–330.

Rees A, Møller AR (1987) Stimulus properties influencing the response
of inferior collicular neurons to amplitude-modulated sounds. Hear Res
27:129–143.

Reich DS, Mechler F, Purpura KP, Victor JD (2000) Interspike inter-
vals, receptive fields, and information encoding in primary visual cor-
tex. J Neurosci 20:1964–1974.

Schreiner CE, Calhoun BM (1994) Spectral envelope coding in the cat
primary auditory cortex: properties of ripple transfer function. Audi-
tory Neurosci 1:39–61.

Schreiner CE, Langner G (1988) Periodicity coding in the inferior col-
liculus of the cat: II. Topographic organization. J Neurophysiol
60:1799–1822.

Schreiner CE, Urbas JV, Mehrgardt S (1983) Temporal resolution of
amplitude modulation and complex signals in the auditory cortex of the

4130 J. Neurosci., May 15, 2002, 22(10):4114–4131 Escabı́ and Schreiner • Spectrotemporal Sound Analysis in the Auditory Midbrain



cat. In: Hearing: physiological bases and psychophysics (Klinke R,
Hartmann R, eds), pp 169–175. New York: Springer.

Schulze H, Langner G (1997) Periodicity coding in the primary auditory
cortex of the Mongolian gerbil (Mariones unguiculatus): two different
coding strategies for pitch and rhythm? J Comp Neurophysiol
181:651–663.

Suga N, Jen PH (1976) Disproportionate tonotopic representation for
processing CF-FM sonar signals in the mustache bat auditory cortex.
Science 194:542–544.

Suga N, O’Neil WE, Manabe T (1978) Cortical neurons sensitive to
particular combinations of information bearing elements of bio-sonar
signals in the mustache bat. Science 200:778–781.

Szulborski RG, Palmer LA (1990) The two-dimensional spatial struc-
ture of nonlinear subunits in the receptive fields of complex cells.
Vision Res 30:249–254.

Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive
fields of nonlinear auditory neurons obtained using natural sounds.
J Neurosci 20:2315–2331.

Van Veen TM, Houtgast T (1983) On the perception of the spectral
envelope. In: Hearing: physiological bases and psychophysics (Klinke
R, Hartmann R, eds), pp 277–281. New York: Springer.

Victor JD, Purpura KP (1998) Spatial phase and the temporal structure
of the response to gratings in V1. J Neurophysiol 80:554–571.

Voss RV, Clarke J (1975) 1/f noise in music and speech. Nature
258:317–318.

Yeshurun Y, Wollberg Z, Dyn N, Allon N (1985) Identification of MGB
cells by Voltera kernels: I. Prediction of responses to species specific
vocalizations. Biol Cybern 51:383–390.

Young ED (1998) What’s the best sound. Science 280:1402–1403.

Escabı́ and Schreiner • Spectrotemporal Sound Analysis in the Auditory Midbrain J. Neurosci., May 15, 2002, 22(10):4114–4131 4131


