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The Contribution of Spike Threshold to Acoustic
Feature Selectivity, Spike Information Content, and
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Hypotheses of sensory coding range from the notion of nonlinear “feature detectors” to linear rate coding strategies. Here, we report that
auditory neurons exhibit a novel trade-off in the relationship between sound selectivity and the information that can be communicated
to a postsynaptic cell. Recordings from the cat inferior colliculus show that neurons with the lowest spike rates reliably signal the
occurrence of stereotyped stimulus features, whereas those with high response rates exhibit lower selectivity. The highest information
conveyed by individual action potentials comes from neurons with low spike rate and high selectivity. Surprisingly, spike information is
inversely related to spike rates, following a trend similar to that of feature selectivity. Information per time interval, however, was
proportional to measured spike rates. A neuronal model based on the spike threshold of the synaptic drive accurately accounts for this
trade-off: higher thresholds enhance the spiking fidelity at the expense of limiting the total communicated information. Such a constraint
on the specificity and throughput creates a continuum in the neural code with two extreme forms of information transfer that likely serve
complementary roles in the representation of the auditory environment.
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Introduction
Two models have been proposed to describe how information
from neuronal spike patterns serves as a neural code for unique
features of sound. “Feature selective” models assume that se-
quences of spikes from a single neuron are precisely timed to
contingent constellations of stimulus parameters (features) from
which the identity of a sound could be precisely determined (Bar-
low, 1953, 1961; Martin, 1994). Unitary action potentials from an
ideal feature detector neuron would signal the occurrence of a
highly stereotyped stimulus feature that is usually assumed to be
of special behavioral relevance (Simmons et al., 1975; Brenowitz
et al., 1997). Feature selectivity has been demonstrated for
species-specific vocalizations in auditory cortex of echolocating
bats (Suga and Jen, 1976; Suga et al., 1978), area X/Hv of song
birds (Brenowitz et al., 1997; Doupe, 1997) and for face represen-
tation in high-level primate visual cortices (Fujita et al., 1992;
Gross and Sergent, 1992). An orthogonal view of sensory feature
encoding is offered by “linear rate coding” models. Linear rate

models assume that sensory features are represented by the time-
varying firing rate of single neurons or neuronal populations. In
principle, the response of a linear neuron is modulated by the
overlap between the stimulus and its neuronal receptive field
(RF). Thus, in contrast to a classical feature detector, a linear
neuron could respond to range of stimulus parameters that are
not precisely contingent on each other. Linear selectivities for
elementary acoustic features such as spectral modulation fre-
quency and direction have been demonstrated in peripheral au-
ditory stations (Nelken et al., 1997; Yu and Young, 2000), the
midbrain inferior colliculus (ICC) and auditory cortex (Kowalski
et al., 1996; Calhoun and Schreiner, 1998; Versnel and Shamma,
1998; Schnupp et al., 2001; Escabı́ and Schreiner, 2002). This
simpler class of acoustic selectivity is analogous to grating and
directional selectivity in visual neurons (Reid et al., 1991; DeAn-
gelis et al., 1993).

Feature-selective and linear rate-encoded responses represent
two extreme response regimens that can be distinguished and
quantified if appropriate stimuli are used. Distinguishing these
encoding regimens requires that we differentiate the “stimulus
specificity” of a neuron from its “stimulus preference.” The stim-
ulus specificity is related to the fidelity in the association between
sensory signal and evoked spikes. High specificity is achieved
when a neuron responds reliably to a given stimulus or feature
but is unresponsive to other stimuli. By comparison, the stimulus
preference is an averaged property of the stimulus–response
function. The average sound preferences of an auditory neuron,

Received May 5, 2005; revised Aug. 28, 2005; accepted Aug. 30, 2005.
This work was supported by grants from the National Institutes of Health (DC006397, DC02260), the National

Science Foundation (NS0139307), and the University of Connecticut Research Foundation. We thank J. J. Chrobak for
comments and discussions on this manuscript. M.A.E. directed the project, conceived the analysis and model, and
wrote this manuscript. R.N. and H.L.R. contributed to the model implementation and design. H.L.R., L.M.M., and
C.E.S. helped perform experiments in the cat ICC and contributed to their interpretation.

Correspondence should be addressed to Monty A. Escabı́ at the above address. E-mail: escabi@engr.uconn.edu.
DOI:10.1523/JNEUROSCI.1804-05.2005

Copyright © 2005 Society for Neuroscience 0270-6474/05/259524-11$15.00/0

9524 • The Journal of Neuroscience, October 12, 2005 • 41(25):9524 –9534



or its spectrotemporal receptive field (STRF), can be estimated by
spike-triggered averaging all of the sound waveforms preceding a
spike output (Hermes et al., 1981; deCharms et al., 1998; Keller
and Takahashi, 2000; Klein et al., 2000; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002).

Calculating the information content in the sensory-related
spike train is yet another way to quantify how spiking patterns
contribute to the neuronal representation. Measures of spike
train information content often make no assumptions about the
features being encoded (de Ruyter van Steveninck et al., 1997;
Borst and Theunissen, 1999) and do not assume a feature-
selective or rate code model.

In the current study, we demonstrate a novel view of auditory
sensory encoding by combining information theoretic ap-
proaches with measures of feature selectivity and stimulus pref-
erence. Single-cell recordings from the cat inferior colliculus
demonstrate specific trade-offs between feature selectivity, spike
rates, and spike information content. These trade-offs provide a
continuum between the fidelity and throughput of the sensory
coding and offer complementary modes of information transfer
for purely linear and feature-selective strategies. A neuronal
model based on sound-evoked synaptically driven input and a
spike threshold accurately accounts for these trade-offs and sug-
gests that the spike threshold is the key mechanisms controlling
the specificity of the encoding regimen.

Materials and Methods
Electrophysiology. Details of the physiological recording and stimulus
presentation methods for this dataset have been presented previously
(Escabı́ and Schreiner, 2002; Escabı́ et al., 2003). Briefly, single-unit re-
cordings of n ! 103 envelope “phase-locking” neurons (Escabı́ and
Schreiner, 2002) were obtained from the central nucleus of the inferior
colliculus of five anesthetized cats. Animals were maintained in an
areflexive state via continuous infusion of ketamine (2– 4
mg ! kg "1 ! h "1) and diazepam (0.4 –1 mg ! kg "1 ! h "1) in lactated
Ringer’s solution (1– 4 mg ! kg "1 ! h "1). Body temperature was main-
tained at #37.5°C, and heart rate, breathing rate, temperature, and pe-
ripheral reflexes were monitored throughout the experiments. Surgical
methods and experimental procedures follow National Institutes of
Health and United States Department of Agriculture guidelines.

Dynamic moving ripple (DMR) and/or rippled noise (RN) stimulus
sequences (Escabı́ and Schreiner, 2002) were presented to the animal in a
sound-shielded chamber (IAC, Bronx, NY). Both sounds were designed
to uniformly cover spectral resolutions from 0 to 4 cycles/octaves and
temporal modulation rates from 0 to 350 Hz. Independent sound se-
quences were presented simultaneously to each ear via a closed, binaural
speaker system [electrostatic diaphragms from Stax (Saitama, Japan)].
All stimuli were presented at 30 –70 dB per one-third octave for a dura-
tion of 8 –20 min.

Measuring acoustic feature selectivity. We devised a second-order stim-
ulus–response analysis to characterize the spectrotemporal selectivity of
auditory neurons by analyzing the variance of the pre-event stimulus
ensemble. First, we computed the STRF, which is the average stimulus
pattern that evoked action potentials. The STRF of a neuron is obtained
by spike-triggered averaging the stimulus waveforms:

STRF$!, Xk% "
1

N !
n

S$tn # !, Xk% , (1)

where N is the number of action potentials, S is the stimulus spectrotem-
poral waveform normalized for unit variance, and the average is condi-
tioned on the ensemble of action potentials times, {tn}. ! and Xk corre-
spond to the stimulus delay (relative to the spike time, tn) and the sound
frequency in octaves (for the kth frequency channel), respectively.

Next, we measured the variance of the statistically significant spike
evoking stimulus patterns. To do this, the STRF was examined for a

significance level of p & 0.002. The subset of STRF samples that exceeded
the significance criterion (outlined as white contours) (see Fig. 2), along
with the overlapping pre-event sound patterns, were treated as vectors.
The response-conditioned stimulus variance is given by

var'S"(tn)* "
1

L $ N !
n

#Sn # STRF#2 ,

where # ! # designates the vector norm, STRF is a vector containing L
statistically significant STRF samples, and Sn is shorthand for the vector
containing the pre-event waveform samples of S(tn " !,Xk) that overlap
the significant STRF region (Fig. 2, white contours). The magnitude
difference between the significant STRF and the nth pre-event spectro-
temporal pattern can be expressed as follows:

#Sn # STRF#2 " #Sn#2 # 2#Sn# #STRF#SIn % #STRF#2 , (2)

where

SIn "
+STRF, Sn,

#STRF# #Sn# (3)

is the response-conditioned stimulus–STRF similarity index (SI) for the
nth action potential, and $ ! , ! % corresponds to the vector dot product.
The SI is equivalent to a correlation coefficient between the pre-event
stimulus pattern and the STRF and assumes values between "1 and 1; a
value of 1 indicates that the STRF and the nth pre-event spectrotemporal
pattern have identical shapes; a value of 0 indicates that they bear no
resemblance; a value of "1 is unlikely to occur, because it implies that the
sound pattern is 180° out of phase with the STRF.

From Equation 2, two independent factors contribute to the response-
conditioned stimulus variance. First, the SI determines the similarity in
shape between the pre-event stimulus and the STRF. The variance is thus
minimized if the SI for all stimulus patterns is near 1. Second, the mag-
nitude of the variance is proportional to the difference in magnitudes
between the STRF and pre-event stimulus. Thus, ideally, the variance is
precisely 0 if and only if the pre-event pattern of all action potentials are
identical in shape to the STRF (SI is unity for all n) and their norms are
identical: #Sn# " # STRF# for all n. Here, we take advantage of the fact
that our moving ripple stimulus has a fixed peak-to-peak amplitude
(Escabı́ and Schreiner, 2002) and thus a constant norm. This allows us to
consider how the stimulus shape (SI) contributes to the neural selectivity
without the influence of stimulus norm or contrast, which we previously
showed to contribute significantly to neuronal responses in the ICC (Es-
cabı́ et al., 2003).

We quantified the average specificity (or selectivity) by characterizing
the ensemble of SIs. Collectively, we represent these by the SI probability
distribution function, p(SI ). Our feature selectivity metric consists of
measuring the bias in p(SI ) in relationship to a hypothetical feature
detector, pfd(SI ), or a randomly firing neuron, pr(SI ). First, we removed
the bias resulting from idiosyncrasies in irregular firing by computing the
SI distribution for a random neuron. This was done by generating a spike
train with 12,000 Poisson distributed action potentials over the DMR
stimulus duration and then using the original STRF to measure the SI
distribution for the random spikes, pr(SI ). This distribution was typically
tightly centered about an SI of 0, although some slight skewing was
observed that was dependent on STRF shape. Next, we considered the
expected distribution of a hypothetical feature detector neuron, pfd(SI ).
Because a hypothetical feature detector responds if and only if the shape
of the pre-event stimulus precisely matches the STRF, its SI distribution
consists of a single peak centered about an SI of 1.

We next measured the bias of our real neuron relative to our random
and feature detector control conditions. To do this, we first integrated the
probability distribution function of our real, random, and feature detec-
tor neurons as follows:

P$SI% " &
"1

SI

p$&%d& , (4)
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and we therefore represented the behavior of each by a cumulative dis-
tribution function (CDF) (see Fig. 3, right column). The cumulative
distribution of random neurons, Pr(SI ), contains a sharp transition at
SI ! 0. The feature detector CDF, Pfd(SI ), has a sharp transition at SI !
1. The CDF of real neurons [P(SI )] typically had a smooth transition
somewhere in between. The bias is measured as a feature selectivity index
(FSI) as follows:

FSI "
Ar # A

Ar # Afd
, (5)

where the measurements

A " &
"1

1

P$SI%dSI (6)

correspond to the area underneath each cumulative distribution func-
tion for the real ( A), feature detector (Afd), and random (Ar) neurons.
The FSI takes continuous values from 0 to 1. FSIs of 1 indicate that the
neuron behaves like a hypothetical feature detector, whereas values near
0 indicate that the response specificity was low (i.e., random firing
neuron).

In the case in which neurons responded binaurally, and therefore pro-
duced significant STRFs for the contralateral and ipsilateral inputs (Qiu
et al., 2003), the FSI procedure was modified without loss of generality to
account for the binaural activation of a neuron. To do this, SIs were
measured for each ear, resulting in a contralateral SIc,n and an ipsiliateral
SIi,n measurement for each action potential, tn. Because the neuronal
responses are now represented by a vector of two simultaneous-SI mea-
surements, the ensemble SI statistics can be represented as joint-binaural
SI distribution, p(SIc,SIi). The FSI could then be represented as FSI ! (Vr

" V )/(Vr " Vfd), where

V " &
"1

1 &
"1

1

P$SIc, SIi%dSIcdSIi

represents the volume measurement underneath the joint-binaural cu-
mulative SI distribution function, P(SIc,SIi). The validity of this binaural-
FSI procedure was tested for monaural neurons, all of which produced
identical measurements as the direct approach using monaural SI distri-
bution (mean correlation coefficient, -0.99; p & 0.001).

Information calculation. Mutual information was estimated using the
methods of Strong et al. (1998) as applied to 5 s ripple noise response
rastergrams (125 trials) in Escabı́ et al. (2003). Briefly, estimates of the
mutual information were obtained for n ! 42 neurons and for simula-
tions from our model neuron (see below, Spectrotemporal integrate-
and-fire neuron model). One neuron was discarded from our sample,
because it deviated substantially from the general trends and it was char-
acterized as a significant outlier ( p & 0.006, bootstrap estimate). The
mutual information was estimated as follows:

I " STotal # SNoise , (7a)

where

STotal " " ! p$w%log2$w% (7b)

is the total entropy of the spike train, and

SNoise " "$! p$w"t%log2$p$w"t%%% (7c)

is the entropy associated with the response variability. The distribution of
response words, p(w) and p(w"t), were estimated from the response spike
rasters (see Fig. 4 A–E). The procedure was bootstrapped across multiple
stimulus segments for various word lengths (T ! 5, 6, 8, 10, 15, 20, 40, 80,
160, and 200 ms) and data fractions (100, 80, 50, 33, and 25%) and at

various temporal resolutions (1, 2, 4, 8, 16 ms). The biases associated with
word length and data fraction were removed according to the procedure
of Strong et al. (1998).

Spectrotemporal integrate-and-fire neuron model. We devised a simpli-
fied model neuron to examine the relationship between feature selectiv-
ity, information content, and the spiking properties of a neuron. This
coupled two-compartment model consists of a linear synaptic STRF that
accounts for the spectrotemporal integration of a neuron and a subse-
quent integrate-and-fire neuron that accounts for the cell membrane
integration, thresholding, and action potential generation.

The integrate-and-fire compartment consists of a conventional leaky
integrate-and-fire neuron. The membrane potential is determined from
the following linear cell membrane differential equation:

dV$t%

dt
%

1

!
V$t% "

im$t% % n$t%

C
, (8)

where V(t) ! Vm(t) " Er is the driven intracellular potential of the
neuron [i.e., the difference between the membrane potential, Vm(t), and
its resting potential, Er ("60 mV)], im(t) is the synaptic current input,
n(t) is a white noise current term that is low-pass filtered by the cell
membrane, and ! is the membrane time constant. Spikes are generated in
the model whenever the membrane potential, Vm, exceeds a specified
threshold activation potential, VT. After activation, a 1 ms refractory
period was imposed and the membrane was reset to its resting potential,
at which point the integration continued.

The synaptic current activity of the neuron was computed from the
synaptic STRF of the neuron, STRFsynaptic. The synaptic STRF models
the synaptically driven spectrotemporal activity of the neuron without
the influence of the cell membrane integration. The intracellular mem-
brane current provided by each synaptic frequency channel is derived as
a spectrotemporal convolution between the sound envelope (at a given
frequency) and the synaptic STRF of the neuron as follows:

im, k$t% " & STRFsynaptic$', Xk%S$t # ', Xk%d' . (9a)

Here, im,k is the membrane current for the kth frequency channel, and
S(t,Xk) is the sound spectrotemporal envelope. The total current that is
injected into the neuron is obtained as the sum of the current contribu-
tions from each frequency channel as follows:

im$t% " G !
k!1

L

im, k$t% , (9b)

where im is the total injected current, and G is a gain constant which
adjusts the current amplitude to produce an intracellular voltage of de-
sired variance.

To apply the spectrotemporal integrate-and-fire (STIF) model to
STRFs from our neuronal data, we devised a procedure for removing the
influence of the cell membrane integration from our ICC STRFs. This
procedures allows us to closely approximate the synaptic STRF from our
spike-derived STRFs, STRFspike. First, although in all of our real data we
did not have access to the membrane STRF directly (because we derived
STRFs using extracellular spiking activity), extensive testing on our
model revealed that in general STRFspike ' ( $ STRFmembrane, where (
is an amplitude scaling constant that was strongly dependent on the
normalized threshold and the internal signal-to-noise ratio (SNR). This
empirical finding is consistent with Price’s theorem as applied to spike-
triggered averaging analysis (de Boer and Kuyper, 1968). We therefore
approximated the membrane STRF by its spike-derived counterpart
$STRFmembrane ' STRFspike% and then adjusted the arbitrary gain
factor G in Equation 9b to produce a desired spike rate or intra-
cellular variance.
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Next, the synaptic STRF is related to the membrane STRF of
the neuron, STRFmembrane, via a linear deconvolution as follows:

STRFsynaptic$!, Xk% " & STRFmembrane$), Xk%hmembrane
"1 $! # )%d) ,

(10a)

which removes the membrane impulse response from the STRF of the
neuron. Here, STRFsynaptic is obtained by inverse filtering the mem-
brane STRF with the membrane impulse response of the cell,

hmembrane$!% " C"1e"t/!u$t% , where ! is the membrane integration time
constant and C is the membrane capacitance. We implemented this de-
convolution in the Laplace transform domain as follows:

STRFsynaptic$s, Xk% "
STRFmembrane$s, Xk%

Hmembrane$s%
, (10b)

where s is the Laplace variable, and the membrane transfer function is
Hmembrane(s) ! C "1 (s . 1/!) "1.

To examine how the threshold and noise level of the neuron affects its
spiking activity, we reduced the intracellular parameters of the neuron to
only those that affected the spiking properties. Examination of the model
revealed that the analysis could be simplified substantially by noticing
that the model output only depends on the “relative” intrinsic drive in
relation to the resting and threshold potentials. We therefore defined a
dimensionless “normalized threshold” as follows:

NT "
VT # Er

'm
, (11)

which corresponds to the number of intracellular voltage SDs required
for spike activation. The intracellular signal-to-noise ratio was defined as
follows:

SNR " 20 log10$'m/'n% (12)

where 'm
2 $ 'n

2 correspond to the signal and noise intracellular voltage
variance, respectively (assuming no spiking).

Population model. To see whether the spiking STRF model could explain
our population trends, we simulated a population of neurons by randomly
choosing integrate-and-fire (IF) neuron parameters. We then optimized the
model results by fitting the model to Figure 4F and tested whether it could
account for our remaining population trends (see Fig. 6B–D).

To do this, we first selected a subset of six real
neuron STRFs for the STIF model that closely
approximated the receptive field preferences in
the inferior colliculus and that are representa-
tive of our population distribution in a previ-
ous study (Qiu et al., 2003). Each receptive field
was fitted with a Gabor model as described in
Qiu et al. (2003). We performed this procedure
to assure that receptive field size or shape in all
of our simulations did not bias our results.

We next simulated a population of randomly
sampled neurons by sampling STIF neuron pa-
rameters and STRFs at 240 independent condi-
tions. At each IF neuron condition, one of the
six STRF models was selected randomly, and
the predicted intracellular current was then in-
jected into the IF compartment. All IF param-
eters were then selected randomly from a uni-
form distribution (initial range: SNR !
"20 –10 dB; NT ! 0.5– 6; ! ! 5–15 ms). Opti-
mization of the model was performed by prun-
ing iteratively the upper and lower limit of the
SNR and NT distributions so that the linear re-
gression slope, intercept, and SD of the model
spike information versus spike rate trend (see
Fig. 6 A) matched the ICC population data (see
Fig. 4 F) as closely as possible. Pruning of the
SNR and NT upper and lower limits was per-
formed in 5 dB and 0.5 steps, respectively. This
model fitting procedure selected n ! 98 (of
240) neurons with uniformly distributed IF pa-
rameters (optimized range: SNR ! "15– 0 dB;
threshold, NT ! 1– 4) that best matched the
spike information versus spike rate data of Fig-
ure 4 F. The resulting model parameters were
then used to cross-validate the remaining
trends (see Fig. 6 B–D).

Figure 1. Hypothetical models of receptive field construction and stimulus selectivity as
measured by averaging stimulus waveforms preceding action potentials. This procedure is il-
lustrated for two idealized scenarios. In A, the stimulus waveforms preceding each action po-
tential are highly stereotyped from spike to spike as expected for a neuron with high stimulus–
response specificity. B, The same receptive field could instead be obtained from a large
ensemble of stimulus–response patterns that vary from spike to spike and, therefore, contrib-
ute differently to the formation of a receptive field as for a linear integrator. The composition of
the waveforms preceding action potentials is highly variable for B, whereas for A, the stimulus
composition shows no variability and the neuron responds exclusively to a fixed combination of
stimulus features.

Figure 2. Representative pre-event spectrotemporal waveforms of two inferior colliculus neurons. STRFs are shown for both
neurons at the far left. Significant excitatory and inhibitory receptive field domains ( p & 0.002) are delimited by black and white
contours, respectively. SI (i.e., correlation coefficients) values between the significant STRF and the overlapping pre-event wave-
form for each action potential are shown above each panel. A shows a neuron with low stimulus–response variability. Pre-event
stimulus waveforms that initiate action potentials closely resemble the STRF (high SI values; near 1). Typically, excitatory and
inhibitory STRF subregions overlapped ON and OFF stimulus features, respectively. For the neuron in B, the stimulus waveforms
preceding action potentials are highly variable in their spectrotemporal composition and did not individually resemble the STRF
(low SI values; near 0). Typical action potential traces are shown for reference (far right). Freq., Frequency.
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Results
Acoustic feature selectivity
We examined the relationship between spiking activity and struc-
turally rich stimulus patterns to quantify the specificity of sound
encoding in the central nucleus of the inferior colliculus. We
presented continuous dynamic noise sequences that probe many
of the relevant spectrotemporal stimuli for the ICC. DMR and
RN stimuli are broadband sounds with dynamic spectral and
temporal modulations that have been shown to efficiently acti-
vate ICC neurons (Escabı́ and Schreiner, 2002). We next esti-
mated the average preference of each neuron, or its STRF (Fig. 1),
by spike-triggered averaging the stimulus patterns preceding
each action potential. The STRF activity pattern can be inter-
preted in terms of intrinsic mechanisms leading to the stimulus–
response activation such as excitation, inhibition, and/or
suppression.

The obtained STRFs provide an initial glance at the “average”
stimulus features that evoke neural responses but provide no
information on how individual action potentials contribute to
the average. To determine how the stimulus–response ensemble
contributes to the average receptive field, we analyzed the spike-
evoking stimulus patterns by considering whether these are
highly conserved from one action potential to another. The pos-
sible coding schemes responsible for a particular ICC STRF pat-
tern could extend from highly precise stimulus–response rela-
tionship to a highly variable stimulus–spike pattern. Yet, the
response activity of two separate neurons could potentially lead
to similar STRF patterns despite substantial differences in the
specificity of the spiking activity and the stimulus patterns that
initiate action potentials (Fig. 1). The relationship between the
stimulus–response variance and the feature specificity of a neu-
ron is illustrated in Figure 1 for a hypothetical feature detector
and a linear integrating neuron. For a hypothetical feature detec-
tor, the pre-event stimulus patterns are highly consistent in their
spectrotemporal composition (zero variance, high parameter
contingency) and closely resemble the STRF of the neuron (Fig.
1A). Conversely, the STRF construction procedure could corre-
spond to the average of a large ensemble of pre-event stimulus
patterns that are highly variable (low parameter contingency)
but, at least, partially overlap the average STRF. For this hypo-
thetical linear neuron, each stimulus pattern bears little resem-
blance to the STRF, but together they average to the STRF pattern
(Fig. 1B), as expected for a linear/energy integrating neuron
(Theunissen et al., 2000; Escabı́ and Schreiner, 2002). In contrast,
a spontaneously active random neuron would produce a zero-
valued STRF in which the spectrotemporal patterns preceding
each action potential have nothing in common and, conse-
quently, are the most variable.

We characterized the variability of the spike-evoking stimulus
patterns by using the average receptive field of each neuron as a
reference template, with few assumptions about the relevant
stimulus features. The variability of the stimulus–response en-
semble could be ascertained by measuring the conditional vari-
ance of the stimulus patterns that initiate action potentials. Each
receptive field is compared directly with the stimulus pattern
preceding each action potential (Fig. 2) by computing the
response-conditioned stimulus–STRF SI (equivalent to a corre-
lation coefficient between the STRF and each pre-event stimulus
pattern) (see Materials and Methods). For each action potential,
the SI characterizes the degree of shape similarity between the
pre-event sound pattern and the STRF (values near 1 designate a

close match; values near 0 indicate a mismatch between the STRF
and the stimulus pattern).

The match in spectrotemporal shape between the pre-event
DMR stimulus and the STRF for the action potentials of a neuron
varied considerably across the sampled population of ICC neu-
rons (n ! 61). Example STRFs of two neurons and representative
pre-event patterns for each are shown in Figure 2 (red arrows
designate the instant of an action potential). In some instances,
the stimulus patterns that evoked action potentials were highly
conserved across the response ensemble (Fig. 2A). Comparing
the STRF and the pre-event sound patterns overlapping the sig-
nificant ( p & 0.002) excitatory (black contour) and inhibitory
(white contour) STRF subregions shows that excitatory domains
are typically overlapped by ON or high-energy stimulus regions,
whereas OFF or low-energy stimulus patterns typically overlap
the inhibitory STRF patterns. Although the precise match in
spectrotemporal shape composition between the STRF and each
pattern could vary widely for this neuron (SI range, "0.02–1.0),
it shows a strong bias toward high similarity index values (the
same neuron is shown in Fig. 3B; mean SI value, 0.53). The re-
sponse pattern for this neuron was accompanied by a very low
spike rate (0.11 spikes/s; n ! 139 spikes) and a highly significant
STRF ( p & 0.002; peak-to-peak STRF amplitude, 0.21 spikes/s)
(Fig. 3B). The low spike rate and high SI values indicate the neu-
ron responded selectively to a small subset of the DMR stimulus
ensemble.

Other neurons exhibited only a low association between the
stimulus ensemble and the measured STRF (Fig. 2B), implying
lower selectivity to specific spectrotemporal stimulus parameters.
Despite a highly significant STRF ( p & 0.002; peak-to-peak STRF
amplitude, 7.2 spikes/s; the same neuron is shown in Fig. 3E with
the corresponding amplitude scale) and a robust firing rate (18.1
spikes/s; n ! 22,355 spikes), the pre-event stimulus patterns for
this neuron exhibited a highly variable spectrotemporal compo-
sition. Although the SI values extended over a broad range
("0.56 – 0.60) the average SI was near 0 (0.06). Accordingly, ex-
citatory and inhibitory STRF subregions were not exclusively
overlapped by ON and OFF stimulus patterns before spike initi-
ation. This example demonstrates that the stimulus patterns that
lead to the generation of action potentials do not need to precisely
match the STRF of the neuron. It shows how a neuron can re-
spond to a wide variety of stimulus patterns, each providing only
a small energy contribution to the STRF structure.

This second-order analysis of the stimulus–response ensem-
ble leads to a single similarity index measurement for each action
potential. The behavior of each neuron can be characterized by
the collection of SIs expressed as a distribution function (Fig. 3).
For a hypothetical feature detector, the spike-evoked stimulus
patterns would always precisely match the STRF, and therefore,
the SI distribution consists of a single peak at SI ! 1 (Fig. 3A–E,
middle column, dashed curve). For a random neuron (see Mate-
rials and Methods), the SI distribution would be tightly centered
about SI ! 0 (Fig. 3A–E, middle column, dashed-dot curve). The
SI distributions of real neurons rarely resembled those of the
hypothetical feature detector (Fig. 3A–E, middle column, contin-
uous curve) and often overlapped those of a random neuron (Fig.
3C–E, middle column).

The selectivity bias of each neuron can be obtained by con-
verting its SI distribution to a cumulative SI distribution function
(Fig. 3A–E, right panels; real neuron CDF, continuous curve;
random Poisson neuron CDF, dashed-dot; feature detector CDF,
dashed) and measuring the relative difference between the real
neuron and the control conditions (see Materials and Methods).
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Thus, rather than forcing individual neurons to fall into either of
two categories (random or feature selective), this procedure
quantifies selectivity along a continuum. The FSI (see Materials
and Methods) (Fig. 3A–E, far right) assumes numerical values
between 0 (no feature specificity) and 1 (a neuron that behaves

Figure 4. Trade-offs in spike information content and response throughput. A–E, Examples
of response rastergrams (2 s segments) from five inferior colliculus neurons (sorted according to
spike rate) show a precisely time-locked response signature down to millisecond resolution
(shown at 1 ms bin widths). Poststimulus time histograms are superimposed above each ras-
tergram. Single action potentials are more meaningful (high spike information) for neurons
with the low spike rates. The stimulus-related information per unit time (information rate),
however, appears to increase with increasing spike rate for the five neurons. As for the exam-
ples, population results show a distinct trade-off between spike information and firing rate (F )
(mean / SD, r ! "0.78 / 0.05; p & 10 "3). In contrast, the information rate is dominated
by the firing rate of the neuron (G) (r ! 0.95 / 0.02; p & 10 "3).

Figure 3. Trade-off in feature selectivity and spike rate throughput. Data are shown for
five single neurons in the ICC (A–E). STRFs are shown for each neuron in the far left panels
(color bar; units of spikes/second). Collectively, the variability of the pre-event stimulus
waveforms of each neuron is represented by the probability distribution of similarity index
(PDF) (middle panels) or by a cumulative SI distribution function (CDF) (right panels). Each
distribution is shown for a random neuron (Poisson spike train; dashed-dotted), the real
neuron (continuous), and a hypothetical feature detector (dashed). The FSI measures the
bias of the real neuron CDF in relationship to the random and feature detector CDFs (see
Materials and Methods). Neurons are shown according to increasing FSI (A–E). Neurons
with low FSI have SI distributions biased toward the random control (high variability) and
typically the highest firing rates, whereas the distributions of high FSI neurons are biased
toward the feature detector control (low variance) and low spike rates. F, The distribution
of FSI is bimodally distributed in the ICC. G, Firing rate and FSI shows a strong negative
correlation, so that firing rates systematically decrease with increasing FSI (doubly loga-
rithmic linear regression fit: continuous line). Freq., Frequency.
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like a hypothetical feature detector). The
FSI of real neurons falls somewhere in be-
tween (observed range, 0.08 – 0.71). Be-
cause the random neuron and the feature
detector neuron serve as a reference for this
analysis, the FSI measures the relative fea-
ture selectivity bias of the response of the
neuron.

FSIs in the ICC systematically increased
as the variability of the stimulus–response
ensemble decreased (Fig. 3A–E). Neurons
with SI distributions that mostly overlapped
the random neuron control typically had low
FSI values. As an example, the neuron of Fig-
ure 2B responds to a large variety of spectro-
temporal patterns (high variability), and
consequently, its SI distribution consisted of
values near 0 that overlapped the random
control condition (Fig. 3E). Alternately, if the
neuron responded reproducibly to a specific
feature of the stimulus (low variability) (Fig.
2A), the SI distribution was shifted toward
the feature detector control distribution (Fig.
3B). In such instances, the pre-event stimulus
patterns were highly consistent in their spec-
trotemporal composition, and the STRF
closely resembles the pre-event stimulus pat-
terns (Fig. 2A). These examples show that the
spectrotemporal feature specificity of the re-
sponse of the neuron is inversely related to
the variability of the stimulus–response en-
semble. It also demonstrates that feature se-
lectivity and stimulus–response variability
fall along a continuum [i.e., neurons that act
as pure feature detectors (at least in the case of
the DMR parameter ensemble) are the
exception].

Spectrotemporal feature selectivity and
spike information content: trade-offs
with information throughput
The spectrotemporal feature selectivity of the studied ICC neu-
rons, estimated by their FSI to the DMR stimulus, covered a wide
range of values (0.08 – 0.71) and was bimodally distributed (Fig.
3F) (verified post hoc, k-means cluster analysis; p & 0.01). Al-
though a small number of neurons show a strong bias toward
high selectivity (20%; n ! 12; FSI - 0.36) the majority of ICC
neurons exhibit low feature selectivity (80%; n ! 49; FSI & 0.36).

High FSIs are accompanied by low spike rates, whereas neu-
rons with low FSIs typically have high spike rates (Fig. 3G). Re-
gression analysis revealed a strong negative correlation (mean /
SD, r ! "0.91 / 0.02; p & 10"3; bootstrap) between feature
selectivity and firing rates that followed a power-law relationship:
FSI 0 0.318 1 rate"0.35 (linear regression fit on a log–log plot;
predictive quality of power-law, r ! 0.79 / 0.05) (Fig. 3G). Thus,
feature selectivity places constraints on the DMR stimulus pat-
terns that a neuron can respond to, leading to a low firing rate for
highly selective neurons.

High variability in the stimulus patterns preceding action po-
tentials limits the contribution of a single spike-stimulus pattern
to the total STRF. To determine the relative contribution of in-
dividual action potentials, we computed the mutual information
of n ! 42 single neurons by analyzing 125 repeated trials of the

ripple noise stimulus (Strong et al., 1998). Neuronal responses in
the ICC to repeated sound segments typically consisted of phasic
responses of only a few milliseconds duration (Fig. 4A–E) that
were often highly reproducible. This timing precision and re-
sponse reliability was reflected in the information content per
spike, which systematically increases for the examples as the spike
rate is reduced (Fig. 4A–E, far right).

By examining the relationship between spike information
content and measured spike rates for the population (Fig. 4F), we
find that spike information is inversely related to neuronal spike
rates (log rate vs log information; mean / SD, r ! "0.78 / 0.05;
p & 10"3; bootstrap) in a manner that closely mimics the rela-
tionship for feature selectivity (Fig. 3G). As for feature selectivity
this relationship was accurately accounted for by a power-law
relationship of similar exponent (spike information 0 4.0 1
rate"0.3; goodness of fit, r ! 0.89 / 0.03). Thus, unitary action
potentials of neurons with low spike rates and high selectivity
have the highest spike information content. In contrast, ICC neu-
rons with high spike rates are characterized by lower fidelity and
lower spike information, but have a large number of action po-
tentials available to encode stimulus information.

Which of these two possible extremes conveys the most stim-

Figure 5. STIF neuron model. The STIF neuron model is shown as applied to the receptive field of an ICC neuron (original STRF;
top). The dynamic moving ripple stimulus (middle left) is integrated by a synaptic STRF that accounts for the postsynaptic current
input to an IF compartment. The intracellular membrane voltage is shown for three trials of the dynamic moving ripple stimulus
segment. The spike-triggered average receptive field (simulated STRF; bottom) closely approximates the original receptive field
as expected. Results from the STIF neuron model of A are shown in B as a function of the spike threshold. Simulated rastergrams
(B, top) and a sample intracellular voltage waveforms (B, bottom) are shown for intracellular thresholds of "50, "40, and "20
mV (intracellular voltage variance, 10 mV with no spikes; resting potential, "60 mV). Rastergrams lose their sustained response
and become increasingly phasic as the threshold level is increased. Results are shown by changing the threshold level and keeping
all other model parameters fixed. Because the model results depended only on the relative synaptic activity in relation to the
resting and threshold potentials, the spike threshold levels were normalized as the number of intracellular voltage SDs required
for spike activation (see Materials and Methods). For B, these correspond to normalized thresholds of 1, 2, and 4 SDs, respectively.
Spike rates systematically decrease with increasing normalized threshold (C), whereas feature selectivity (D) and spike informa-
tion (E) increase. Results are shown for 10 simulations using different sound segments at each threshold value.
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ulus information to the neuronal encoding? The overall informa-
tion conveyed by a neuron can be expressed as the information
rate, that is, the product of information per spike and the spike
rate of the neuron: Irate ! R 1 Ispike (units in bits/second). The
relationship between neuronal spike rates and information rates
in the ICC shows a strong positive correlation (r ! 0.95 / 0.02;
p & 10"3) (Fig. 4G) and is well accounted for by a power-law fit:
information rate 0 4.0 1 rate 0.7 (r ! 0.87 / 0.05). Thus, despite
a significant trade-off for spike information and spike rate (Fig.
4F), the mean spike rate of the neuron (and not the information
per spike) dominates the total communicated information.

Intracellular basis for stimulus selectivity and its trade-off
with spike rate and spike information
We hypothesize that the observed trade-offs in the fidelity of the
neuronal encoding (feature selectivity, spike information) and its
throughput (spike rate, information rate) could be explained by
thresholding in the action potential generation mechanism. Con-
ceptually, neurons with higher spike thresholds should produce
lower spike rates and would exhibit higher specificity in the stim-
ulus–response relationship and therefore greater fidelity. It is not
clear, however, whether such a simple mechanism could account
for the bimodal nature of the feature selectivity in the ICC pop-
ulation and the paradoxical result that low-fidelity neurons con-
vey the most information by virtue of their higher spike rates. We
devised a simplified STIF neuronal model to test whether it could
account for the observed trends.

The neuronal model consists of a synaptic STRF that takes
into account the spectrotemporal integration of the synaptic af-
ferents (see Materials and Methods) (Fig. 5A). The synaptic cur-
rent produced by this compartment is used to drive an integrate-
and-fire neuron model that accounted for the cell membrane
integration and spike generation (see Materials and Methods).
Example traces of the model output for a segment of the DMR
stimulus show that the spike rates decrease as the relative spike
activation threshold is increased (Fig. 5B,C); the response spike

specificity, however, improves for higher
thresholds as can be seen in the trends for
spike information and feature selectivity
(Fig. 5D,E). The model results resemble
data from the real ICC neurons in that the
response rasters lose their sustained re-
sponse and become increasingly phasic, and
thus more precise, as the spike rate is de-
creased (Fig. 5B).

In a large-scale simulation, we randomly
sampled neuronal parameters for 240 STIF
model neurons to mimic the random sam-
pling of the neuronal data for the ICC pop-
ulation. Each neuron consisted of a repre-
sentative ICC STRF (Qiu et al., 2003) (see
Materials and Methods), which was tested
by computing its FSI, spike information, in-
formation rate, and spike rate at a randomly
chosen threshold condition, membrane
time constant, and SNRs. The range of
model parameters used (SNR and threshold
level) was iteratively adjusted so that the re-
lationship between spike rates and spike in-
formation for the model population (Fig.
6A) covered a comparable range as in the
ICC data (Fig. 4F). Although the model pa-
rameters were strictly adjusted for the spike

information and spike rate relationship, the general features of
the remaining trends in the ICC (information rate and feature
selectivity) emerged naturally from the model simulations (Figs.
6B–D).

The relationship between spike rate and feature selectivity ob-
tained from the STIF model (Fig. 6C) closely resembles the ICC
population data (Fig. 3G). Stimulus patterns that lead to activa-
tion of the neuron model are significantly more precise on a
spike-to-spike basis (FSI vs spike rate: r ! "0.81 / 0.03; p &
10"3) and convey more stimulus related information (Fig. 6A)
(spike information vs spike rate: r ! "0.86 / 0.04; p & 10"3) for
neurons in which the spike rate is low. Despite this negative cor-
relation between spike information and spike rate, information
rates are proportional to the mean spike rates (Fig. 6B) (r !
0.90 / 0.02; p & 10"3) as observed in the ICC data (Fig. 4G).
Therefore, the average driven activity of each neuron dominates
their information-carrying capacity. Surprisingly, the model ac-
curately replicates the bimodal nature of the feature selectivity for
the ICC (compare Figs. 6D, 3F) despite the fact that the original
distribution of model parameters was continuously defined (see
Materials and Methods).

To quantify how well the STIF model accounts for the mutual
information and feature selectivity trends, we fitted each of the
model scatter plots to a power-law function (Fig. 6A–C, dashed-
dot curves) and used these simulated curves to predict the origi-
nal population data. The power-law relationships from the STIF
model accurately predicted the feature selectivity of individual
neurons from their spike rate measurements (regression slope !
1.0; r ! 0.89 / 0.03) (Fig. 6G). Furthermore, the STIF model
accounts for the spike information (regression slope ! 0.80; r !
0.78 / 0.06) (Fig. 6E) and information rate trends (regression
slope ! 0.76; r ! 0.87 / 0.05) (Fig. 6F) and replicates the strong
negative correlation between these two variables.

Which neuronal factors contribute to the observed trade-offs?
We addressed this question by examining the relationships be-
tween the intracellular parameters of each model neuron and

Figure 6. Population simulation of the STIF model accounts for observed trade-offs in the ICC. The STIF model was simulated
at 240 randomly sampled threshold and signal-to-noise conditions. The optimal threshold and SNR parameter range were
determined by matching the model data from A against the ICC spike information versus spike rate trend (Fig. 4 F) (see Materials
and Methods). Optimal (red circles) and nonoptimal (black triangles) model parameters are shown for A; only the optimal values
are shown for the subsequent panels (black circles). Trade-offs in response throughput (spike rate and information rate) and
spiking fidelity (spike information and feature selectivity) are accurately predicted by the STIF model. The model accurately
replicates the spike information versus spike rate trend (A; compare with Fig. 4 F), spike rate versus information rate (B;
compare with Fig. 4G), spike rate versus feature selectivity (C; compare with Fig. 3G), and the bimodal nature of feature
selectivity (D; compare with Fig. 3F ). Dashed-dot curves in A–C represent the optimal power-law fits to the model data. The
predicted and observed spike information (E), information rate (F ), and feature selectivity (G) are closely matched for the ex-
perimental data and model. Predictions for each metric were obtained by substituting the spike rate of each neuron into the
power-law fits from the STIF model data in A–C.
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each of the measured response metrics
(Fig. 7). Although the intracellular SNR
shows a significant but subtle correlation
with feature selectivity (Fig. 7B) (r !
0.44 / 0.07; p & 10"3) and spike informa-
tion (Fig. 7F) (r ! 0.28 / 0.09; p & 10"3),
detailed examination revealed that this
correlation does not account for the dom-
inant trade-off in the spiking fidelity be-
cause SNR would have to be negatively cor-
related with spike rate (data not shown)
(r ! 0.04 / 0.09; p - 0.9). Similarly, the
membrane time constant shows no signif-
icant correlation with feature selectivity
(Fig. 7A) (r ! 0.0 / 0.1; p - 0.9) and only
a weak correlation with spike information
(Fig. 7E) (r ! "0.2 / 0.1; p & 0.05) that
does not account for the observed trends in
neuronal fidelity. The most pronounced
trend resulted from the spike activation
threshold of the model. Spike rates de-
crease systematically with increasing
threshold (Fig. 7D) (r ! "0.964 / 0.008;
p & 10"3), whereas the feature selectivity and spike information
systematically increase (Fig. 7C) (FSI vs threshold: r ! 0.83 /
0.03; p & 10"3) (Fig. 7G) (spike information vs threshold: r !
0.86 / 0.02; p & 10"3). The close agreement of the response
trends between the neuronal data and model thus suggests that
the observed trade-offs between spiking fidelity and response
throughput are controlled by the spike threshold of the neuron.

Discussion
In the ICC, as in the model, neuronal fidelity (spike information,
feature selectivity) and throughput (spike rate, information rate)
were systematically traded off. Neurons with high spike rates can
convey large amounts of stimulus-related information despite
unreliable spiking. In contrast, neurons exhibiting sparse re-
sponses can signal the occurrence of stereotyped parameter con-
stellations or features with action potentials that convey high
information value. The precise nature of this trade-off was accu-
rately reproduced in a population of model neurons by simply
considering a distribution of spike threshold levels. Threshold
has the effect of enhancing the spiking fidelity at the expense of
limiting the communicated information in a manner that closely
matches the physiological data. It is plausible that variations in
effective spiking threshold in ICC could arise from variation of
ascending inhibition, voltage-gated conductance, cell surface ar-
eas, input resistance differences, or anesthesia level (see details
below). Because these are common mechanisms of altering
threshold level in all spiking neurons, the results outline a general
encoding principle.

Higher feature selectivity limits the subset of stimulus features
that a neuron can potentially respond to as evident in our analy-
sis. By design, the features in the DMR are highly variable, and
consequently, average firing rates of neurons with high selectivity
are low. Presumably, if the DMR were biased to include many
more epochs of the preferred feature, neurons with high FSIs
could generate higher mean spike rates. Neurons with low FSIs
and highly significant STRFs generally had exceptionally high
spike rates. An ideal linear integrating neuron would respond to a
large collection of stimulus patterns, provided that stimulus en-
ergy is presented within its spectrotemporal filter. Such an ideal-
ized neuron should phase-lock to a variety of structured and

unstructured inputs with equal efficacy (Escabı́ and Schreiner,
2002), assuming that sufficient stimulus energy is provided. Neu-
rons with high selectivity may also require highly correlated in-
puts (so that the stimulus pattern closely resembles the average
STRF) to initiate temporally phase-locked action potentials (Es-
cabı́ and Schreiner, 2002; Hsu et al., 2004). Such an additional
requirement would force the neuron to respond exclusively to
stimulus patterns that resemble the average.

The relationship between neuronal fidelity and response
throughput across the sampled population likely represents a
continuum in the neuronal code for the ICC. A distributed code
could have a significant impact on sensory information transfer
from ICC to auditory thalamus. Single action potentials from
high spike rate ICC neurons are not per se very meaningful, but
can convey large amounts of information if spikes are pooled
together, as required for a “linear” rate code. In contrast, neurons
with low spike rates and high feature selectivity would generate
sparse responses and low information rates. However, single ac-
tion potentials from high-FSI neurons are very informative,
highly reliable, and are much more likely to convey meaningful
information in the precise timing of single neuronal events (Figs.
4 and 5). Whereas the information per spike and feature selectiv-
ity of ICC neurons (Figs. 3G, 4F) and our model (Fig. 6A,C) were
inversely related to driven spike rates, overall information rates
were dominated by the average firing rate (Figs. 4G, 6B).

An intriguing result predicted by the neuronal analysis and
model is that neurons with very similar receptive field preferences
could employ vastly different neuronal encoding strategies. Con-
ceptually, two neurons with identical average spectrotemporal
preferences could exhibit different levels of selectivity. A neuron
with a highly precise stimulus–response relationship would re-
spond reproducibly to a specific stimulus pattern or a specific
stimulus combination as for an ideal feature detector neuron
(Fig. 1A) or a representative ICC cell (Fig. 2A). The low variance
(high FSI) for this example ICC cell indicates that it acts as a
frequency modulation up-sweep detector and distinguishes this
cell from a neuron with similar-looking STRF that responds to
any component within this sweep at different latencies (low FSI)
(as for Figs. 1B, 2B). Thus, the concept of selectivity is closely
related to the variance of the spike-evoking stimulus ensemble

Figure 7. Neuronal factors contributing to the observed trade-offs in feature selectivity, information throughput, and spike
information content. The membrane time constant and SNR of the STIF neuron showed only a weak correlation with feature
selectivity (A and B) and spike information (E and F ) that did not account for the observed trade-offs. Raising the requirements
for spike activation by increasing the normalized threshold level for the model population reduced spike rates (D) and increased
the selectivity (C) and information per spike (G). This simultaneous reduction of the population throughput and increase in
neuronal fidelity that results from the spike threshold explains the observed trade-offs.
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and not to the mean stimulus as previously suggested (deCharms
et al., 1998). As a consequence, a meaningful interpretation of
STRFs requires knowledge of the response variance expressed in
terms of quantitative measures such as FSI or spike information.
Neurons with identical STRFs may reflect either the averaged
response to a large stimulus ensemble or an exclusive response
pattern to a highly stereotyped stimulus feature. This could oc-
cur, for instance, if two neurons share similar intracellular activ-
ity, but have different spike thresholds or resting potentials as
observed for populations of ICC neurons (Kuwada et al., 1997;
Sivaramakrishnan and Oliver, 2001).

Numerous nonlinearities have been implicated as serving an
essential role for neuronal coding of sensory information. Be-
cause linear receptive field models are often not very predictive
on their own, their usefulness for modeling single neuron activ-
ities has been recently brought into question (Bar-Yosef et al.,
2002; Sahani and Linden, 2003; Machens et al., 2004). Nonlinear
ionic conductances in the spiking mechanisms are perhaps the
most pronounced nonlinearities in single neurons, because they
are responsible for converting the continuous intracellular activ-
ity to a binary spiking pattern. Higher thresholds would effec-
tively increase the order of the system nonlinearity, thus increas-
ing the response selectivity. Recent extensions of a linear
temporal receptive field model that incorporates a simple spike
generating threshold has been shown to accurately predict the
spiking activity of visual neurons (Keat et al., 2001). Our data
further reveal that a linear RF model with an appropriate spike
generating nonlinearity accurately reflects trade-offs in the fidel-
ity and throughput as observed in the ICC population.

The threshold nonlinearity in the spike generation mecha-
nism is a key attribute of all spiking neurons and the resulting
trade-offs in spiking fidelity and response throughput could rep-
resent a general property of the neuronal code. The spike thresh-
old “level” on its own is insufficient for generating the observed
population trade-offs, because the resting potential and strength
of the synaptic drive also contribute significantly to the observed
finding. Conceptually, a higher spike threshold voltage has an
equivalent functional outcome for the model as a lower resting
potential or a smaller synaptic current drive. Our concept of
“normalized” threshold was thus introduced to account for these
three factors that together influence the firing rate and spiking
fidelity of the model. Although the spike threshold nonlinearity
shapes some aspects of neuronal responses in the visual and au-
ditory system (Casseday et al., 1994; Kempter et al., 1998; Brin-
guier et al., 1999; Priebe et al., 2004), its role in shaping response
selectivity and information transmission has not been reported
previously. These findings therefore address issues of neuronal
information and stimulus coding beyond modality-specific de-
tails that likely apply to spiking neurons in general.

Although in the neuronal model, spiking fidelity and through-
put are collectively controlled by the combined influence of the
spike threshold, resting potential, and the relative size of the syn-
aptic drive, an equivalent functional outcome could be imple-
mented in real neurons with a variety of mechanisms. A reduc-
tion in the resting potential via shunting conductance could
extend the intracellular voltage range required to generate action
potentials leading to an “effective” higher spike threshold level
and selectivity. Similarly, a sustained inhibitory input could sub-
stantially hyperpolarize the neuron, thus extending the require-
ments for spike initiation (Casseday et al., 1994; Kuwada et al.,
1997). Alternately, the input resistance of a cell could also play a
role, because neurons with lower input resistance would require a
strong and highly concerted synaptic current drive to reach spike

activation (Sivaramakrishnan and Oliver, 2001). Additional en-
hancement can be provided by nonlinear synaptic conductances
(Reyes, 2001; Sivaramakrishnan and Oliver, 2001; Svirskis et al.,
2002), which together with the spike threshold could enhance the
preference for a particular stimulus component. Collectively,
such subthreshold mechanisms combined with the highly non-
linear spike generation threshold would have a common effect of
shaping the suprathreshold response rate and refining the stim-
ulus requirements necessary for spike initiation, thereby enhanc-
ing (or reducing) the stimulus–response selectivity. Although the
level of anesthesia has been shown to alter neuronal responses in
the ICC (Kuwada et al., 1989; Ramachandran et al., 1999), it is
unlikely that it alone accounts for the observed trade-offs, be-
cause a reduced level of excitability (as expected for ketamine;
NMDA antagonist) would primarily increase the effective thresh-
old across our population of neurons. This could potentially bias
our results toward higher selectivity; however, it would not ac-
count for the negative correlation between firing rate and spiking
fidelity. A nonlinear mechanism such as the spike threshold is
required to produce such an effect.

The possible coding schemes that can be achieved with a
simple change in effective threshold level extend from a tem-
porally imprecise “rate code” at low thresholds and high spike
rates to a precise “timing code” at higher thresholds with lower
spike rates and highly informative action potentials. Lower
thresholds are more likely to generate a greater number of
unreliable action potentials, because the synaptic activity from
a larger number of inputs would surpass the threshold level
required for spike activation. Such unreliable spiking activity
could, however, be integrated and averaged at the postsynaptic
cell to convey a meaningful message. In contrast, higher
thresholds could potentially enhance the spiking efficacy in
the transmission of information at a postsynaptic neuron, be-
cause higher thresholds would presumably favor the intracel-
lular activity of the strongest synaptic link (Swadlow and
Gusev, 2002). All or none binary spiking selectivity observed
in cortical auditory neurons may in fact be related to a similar
threshold mechanism (DeWeese et al., 2003).

One hypothesis regarding the functional segregation of high
and low feature selectivity neurons in the population data are that
these may correspond to anatomically distinct cell classes, such as
disk and stellate cells in the ICC (Oliver and Morest, 1984), or
distinct populations of ascending input (Ramachandran et al.,
1999). Collicular neurons can differ in many aspects, including
intrinsic membrane properties and synaptic receptor character-
istics resulting in distinct physiological response types (Sivara-
makrishnan and Oliver, 2001). Although it is tempting to specu-
late that the differences in feature selectivity reflect biophysical
properties or morphological differences between cells that affect
the intracellular requirements for spike activation, more detailed
studies are necessary to establish such relationships. Our model,
however, does not require a bimodal distribution of biophysical
properties, because the selectivity distribution was accounted for
with a continuously defined spike threshold.

Our data and model suggest that thresholding not only affects
the average driven activity of a neuron, but it also constrains the
rate and specificity of the communicated information in a man-
ner that allows for complementary neuronal codes. Neurons with
low spike rates, high thresholds, and high selectivity convey the
most information with single spikes that can be used for detecting
specific instances of the sensory signal. In contrast, neurons with
low thresholds and high spike rates convey the most information
if spikes are pooled together and are therefore well suited for
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encoding sensory information as a rate code. Given that thresh-
olding is a common mechanism of all spiking neurons, such
trade-offs in the fidelity and information throughput of the en-
coded message may represent a general feature of the neuronal
code.
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