
Cognitive Science 44 (2020) e12823
© 2020 Cognitive Science Society, Inc. All rights reserved.
ISSN: 1551-6709 online
DOI: 10.1111/cogs.12823

EARSHOT: A Minimal Neural Network Model of
Incremental Human Speech Recognition

James S. Magnuson,a,b Heejo You,a,b Sahil Luthra,a,b Monica Li,a,b,c

Hosung Nam,c,d Monty Escab!ı,a,b,e,f Kevin Brown,g Paul D. Allopenna,a,b

Rachel M. Theodore,a,h Nicholas Monto,a,h Jay G. Rueckla,b,c

aConnecticut Institute for the Brain and Cognitive Sciences, University of Connecticut
bPsychological Sciences, University of Connecticut

cHaskins Laboratories
dDepartment of English Language and Literature, Korea University
eElectrical and Computer Engineering, University of Connecticut

fBiomedical Engineering, University of Connecticut
gDepartments of Pharmaceutical Sciences and Chemical, Biological, and Environmental Engineering, Oregon

State University
hSpeech, Language, and Hearing Sciences, University of Connecticut

Received 27 August 2019; received in revised form 11 December 2019; accepted 5 February 2020

Abstract

Despite the lack of invariance problem (the many-to-many mapping between acoustics and per-
cepts), human listeners experience phonetic constancy and typically perceive what a speaker intends.
Most models of human speech recognition (HSR) have side-stepped this problem, working with
abstract, idealized inputs and deferring the challenge of working with real speech. In contrast, carefully
engineered deep learning networks allow robust, real-world automatic speech recognition (ASR). How-
ever, the complexities of deep learning architectures and training regimens make it difficult to use them
to provide direct insights into mechanisms that may support HSR. In this brief article, we report prelim-
inary results from a two-layer network that borrows one element from ASR, long short-term memory
nodes, which provide dynamic memory for a range of temporal spans. This allows the model to learn
to map real speech from multiple talkers to semantic targets with high accuracy, with human-like time-
course of lexical access and phonological competition. Internal representations emerge that resemble
phonetically organized responses in human superior temporal gyrus, suggesting that the model devel-
ops a distributed phonological code despite no explicit training on phonetic or phonemic targets. The
ability to work with real speech is a major advance for cognitive models of HSR.
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1. Introduction

Phonetic constancy in human speech recognition (HSR) poses a significant theoretical
challenge for the cognitive and neural sciences. Despite a lack of invariance (a many-to-
many mapping between speech acoustics and linguistic percepts such as consonants, vow-
els, syllables, and words), listeners achieve phonetic constancy, (usually) perceiving a
speaker’s intended message with apparent ease. The acoustic patterns specifying different
phonemes overlap in time (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967),
with few boundaries between phonemes or words (Cole & Jakimik, 1980), and shift with
factors such as speaking rate (Miller & Baer, 1983), talker characteristics (Joos, 1948;
Peterson & Barney, 1952), phonetic context (Liberman et al., 1967), coarticulation (Liber-
man, Delattre, & Cooper, 1952), and novelty of message content (Fowler & Housum,
1987). Although similar problems exist in other domains (e.g., robust visual object recog-
nition over variation in size, rotation, and illumination; DiCarlo & Cox, 2007), the tempo-
ral nature of speech exacerbates the challenge; the elements of a spoken word are a
series of overlapping events that do not persist in the environment (unlike a visual object
or written word, which can be resampled, with all elements simultaneously and persis-
tently present).

Deep-learning neural network models underlying automatic speech recognition (ASR)
provide robust real-world computer speech recognition for billions of users (Hinton et al.,
2012). As Kietzmann, McClure, and Kriegeskorte (2019) have argued, deep networks can
guide theoretical understanding to the degree that they can predict real-world behavior
and/or neural activity. On our view, current deep networks for speech recognition offer
little guidance to theories of HSR. They have many layers of richly connected nodes and
require carefully engineered training regimens that are not (typically) constrained by bio-
logical considerations. Bridging the gap between deep networks that provide robust ASR
and cognitive theories of HSR will require the development of models that progressively
span the current divide.

Scientists have used less complex deep networks to investigate mechanisms that might
support audition and speech. For example, hidden units of a five-layer network trained
explicitly on phoneme recognition (Nagamine, Seltzer, & Mesgarani, 2015) exhibited
phonetically organized responses similar to those observed in human superior temporal
gyrus (Mesgarani, Cheung, Johnson, & Chang, 2014). Another (Kell, Yamins, Shook,
Norman-Haignere, & McDermott, 2018) achieved human-like accuracy on one speech
task (identifying the word at the center of a 2-s speech sample) and one music task (genre
identification), with many layers and a complex training regimen. This network consisted
of seven initial layers shared across the two tasks, which then branched into two separate
five-layer pathways, one for each task. The model was better at predicting human fMRI
responses to natural sounds than a standard spectrotemporal filter model of auditory cor-
tex. Kell et al. suggested that deep learning may be the only computational approach cap-
able of human-like performance in perceptual domains. However, this approach has three
important limitations: (a) unpacking emergent mechanisms in many-layered networks and
linking them to theories of human capacities is a formidable challenge; (b) many deep
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learning approaches to auditory processing do not take over-time input (speech is often
input like an image, as though an entire utterance occurred instantaneously rather than
over time); and crucially, (c) these models have not been applied to the complex time-
course of human lexical activation and competition (a primary focus of cognitive theo-
ries; see Fig. 1).

Simpler models (e.g., McClelland & Elman, 1986) have guided theories of the time-
course of HSR for decades, but they have two different limitations. First, they do not use
real speech as input; since the 1970s, most modeling of HSR has adopted the simplifying
assumption that speech perception provides something like phonemic input to processes
for word recognition, and abstractions from real speech are used as inputs (such as pho-
netic features spread over time [as in TRACE; McClelland & Elman, 1986], or human
diphone confusions [as in Shortlist B; Norris & McQueen, 2008]). Neurally inspired mod-
eling of human speech perception continued (Grossberg, Boardman, & Cohen, 1997), but
in small-inventory models rather than large vocabulary, signal-to-word models. Recent
attempts at linking automatic speech recognition approaches to cognitive models
(Scharenborg, 2010; Scharenborg, Norris, ten Bosch, & McQueen, 2005) generated inter-
esting insights, but with low accuracy and limited empirical coverage. Second, they set
aside the problem of learning, using fixed parameters in neural network (McClelland &
Elman, 1986) or Bayesian approaches (Norris & McQueen, 2008). Nonetheless, these
models simulate the fine-grained timecourse of lexical activation and phonological com-
petition (Allopenna, Magnuson, & Tanenhaus, 1998; see Fig. 1) and have significantly
advanced theories and understanding of HSR dynamics.

The persistence of these two “temporary” simplifying assumptions decades later
reflects the tension between computational adequacy (maximizing task realism and per-
formance) and psychological adequacy (capturing key details of human behavior, while
providing an understandable account of how the model works; McClelland & Elman,
1986). A model with high computational adequacy but opaque mechanisms offers little
guidance to theories that seek to provide mechanistic explanations of HSR at a fine grain.
Thus, it is imperative that we address the gaps of signal and learning via models suffi-
ciently simple that they can guide cognitive theory.

Our goal is to develop a minimal (and thus more readily analyzable and understandable)
cognitive model of HSR that can learn to map over-time speech to semantics, without expli-
cit phonetic training as a first step in bridging the gap between HSR and ASR (ultimately
through progressively more complex and realistic models). A minimal model could reveal
representations that emerge in a simple learning system, providing hypotheses for cognitive
and neural mechanisms supporting HSR. After exploring approximately three dozen models
(varying in input, hidden unit types, and architecture; see Appendix S1), we achieved
human-like performance with a shallow (two-layer) network equipped with long short-term
memory (LSTM) hidden nodes (Hochreiter & Schmidhuber, 1997). LSTM nodes add three
internal gates and a memory cell that allow nodes to develop sensitivity to information over
varied ranges of short and long time scales, mitigating the vanishing gradient problem
(Hochreiter, Bengio, Frasconi, & Schmidhuber, 2001): Recurrent networks (with connec-
tions between nodes within a layer or from a superior to an inferior layer) can theoretically
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become sensitive to dependencies over long time spans, but in practice, context degrades
with each time step, severely limiting the span of learnable dependencies. LSTM nodes
allow networks to learn variable-span dependencies, making them an excellent candidate
for linking simple network models to real speech.

TRACE Activations

(A)

(B)

(C)

(D)

Fig. 1. Dynamics of phonological competition in humans and models. Allopenna et al. (1998) asked listeners
to follow simple spoken instructions to interact with simple displays (e.g., A), and tracked their eye move-
ments as they did so (B). Fixation proportions over time were hypothesized to relate to internal lexical activa-
tion and competition. They used the TRACE model (C; McClelland & Elman, 1986) to simulate their
paradigm. Raw model activations (D) clearly resemble human performance (C); see Allopenna et al. (1998)
for a more complex linking hypothesis and quantitative comparison. The TRACE results in (D) are new
results created by considering all possible cohort and rhyme pairs in the TRACE lexicon; in Allopenna
et al.’s (1998) simulations (not shown here), activations were clipped at 0.0, while we included items with
negative activations. Panels A and B are adapted from Allopenna et al. (1998) as allowed under Elsevier’s
policy for personal use of published materials by authors. Panel C is Magnuson (2019).
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How does the choice to borrow LSTMs compare with other aspects of ASR we
might consider with respect to utility for modeling HSR? On the one hand, LSTMs add
complexity in the form of additional connections and recurrence (the additional input
and recurrent connections required of the LSTM gates), which allows them to circum-
vent the vanishing gradient problem, and allows the network to operate on real speech.
Other alternatives, such as adding more hidden layers to create a deeper network, are
more likely to exacerbate rather than mitigate this issue. While it will be useful for
future work to explore other possibilities, our aim here is to report on the demonstrable
efficacy of LSTMs for processing the over-time speech signal with minimal increase in
complexity.

2. Methods

2.1. Network architecture

We constructed a network (Fig. 2) dubbed EARSHOT, for Emulation of Auditory
Recognition of Speech by Humans Over Time, emphasizing the key aims of working with
real speech and emulating the timecourse of lexical access and competition. The model
has 256 spectrographic inputs, 512 LSTM hidden nodes, and 300 pseudo-semantic outputs
(random sparse vectors; a common simplification [Laszlo & Plaut, 2012] given the lar-
gely arbitrary mapping from sound to meaning). There are feedforward connections
between layers, and the hidden layer is fully recurrent (each node has a connection to
every other). A tanh activation function is applied to hidden unit outputs. Connections
were trained using backpropagation through time (Werbos, 1988). The training target at
each time step was the semantic vector corresponding to the current word. We trained
several models on subsets of 1,000 words produced by 10 talkers (see Section 2.2). The
maximum mean performance was approximately 90%, which required ~500 hidden units
(we used multiples of 32 units at each level to facilitate easy expression of unit ratios).

2.2. Materials

A total of 1,000 words with length varying from 1 to 8 phonemes (mean: 5.5) were
selected randomly from a list of uninflected English words, with the constraint that each
of 39 English phonemes occur at least 10 times. Pronunciations of all 1,000 words were
generated from 10 talkers included in the Apple text-to-speech application, say (five
females and five males). Mean duration was 659 ms (range: 289–1,121 ms). For analysis
purposes, we created 719 diphone syllables for all legal consonant-vowel and vowel-con-
sonant combinations for each talker (24 consonants, 15 vowels). Each sound file was con-
verted to a spectrogram with 256 channels in 10 ms steps, and a sampling rate of
8,000 Hz. For each word, a unique semantic target pattern was created: a sparse vector,
with 10 of 300 randomly selected elements set to 1, and all others set to 0. Word-pattern
mappings were randomized for each model.

J. S. Magnuson et al. / Cognitive Science 44 (2020) 5 of 17



256 inputs 
(spectrogram in 10 ms slices)

Fully recurrent 
(512 x 512)512 LSTM nodes

Full connec!vity (256 x 512)

"Seman!c" output 
(sparse random vector: 10 / 300)

Full connec!vity (512 x 300)

Time

Fr
eq

ue
nc

y

Time

So
un

d 
pr

es
su

re(A)

(C)

(B)

Fig. 2. Model input and structure. (A) Audio files are converted to spectrograms (B), with 256 channels
(rows) in 10 ms steps (columns). Color indicates amplitude (blue-red indicates low-high). (C). The model is
a standard recurrent network, except “long short-term memory” nodes are used in the hidden layer, allowing
it to become sensitive to multiple temporal grains.
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2.3. Training method

We created 10 different models. For each, a different talker was entirely excluded from
training. For each of the nine trained-on talkers, 100 different, randomly selected words
were excluded from training. Thus, each model’s training set consisted of 8,100 input-
output patterns (900 words 9 9 talkers). Tests were conducted on all 10,000 items (10
talkers 9 1,000 words, including items excluded from training). Training was organized
as epochs. Each epoch included one presentation of each of the 8,100 training items in
random order with no pause or other indication of word boundaries except that the train-
ing target pattern changed.

We used three techniques to increase learning speed and performance (Vaswani et al.,
2017): minibatch gradient descent, Noam decay, and Adam optimizing. The 8,100 words
were divided into five mini-batches (4 9 2,000, 1 9 100). A baseline learning rate of
0.002 was applied adaptively using Adam optimization and Noam decay (see
Appendix S1).

2.4. Testing

To quantify the distance between the output vector at each time step to each word in
the 1,000-word lexicon, we computed the cosine similarity of the output vector to all
1,000 semantic vectors (see Appendix S1 for equations). Because higher cosine indicates
greater similarity, we defined a simple but conservative metric for word recognition accu-
racy. Accuracy was operationalized based on a two-parameter threshold: the output vec-
tor’s cosine similarity to the target had to exceed any other item’s cosine similarity to the
output by a minimum of 0.05 for at least 100 ms; subsequently, no item could exceed the
target’s cosine similarity to the output before word offset (this is more conservative than
a simple “maximum similarity” threshold). At the end of every 1,000 epochs, each model
was tested with all 10,000 words (including excluded words and talkers). For additional
details, see Appendix S1.

2.5. Additional details

See Appendix S1 and the EARSHOT Github repository (https://github.com/maglab-uc
onn/EARSHOT), which includes all simulation and analysis code.

3. Results

3.1. Accuracy

Models achieved high accuracy after 8,000 training epochs (Fig. 3): 88% for trained-
on items, 67% for excluded words from trained-on talkers, and 33% for excluded talkers
(range: 4%–78%). Generalization was poor for some talkers, but human listeners can
learn to adapt to novel talkers. Thus, we explored how quickly models could learn when
we resumed training with all items. Performance improved rapidly (to 89% for excluded
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words and 86% for excluded talkers, and a boost to 93% for previously trained items).
While the amount of training is too large to be analogous to rapid adaptation to new talk-
ers by human listeners, it suggests a promising avenue for future investigation. Accuracy
details by talker are presented in Appendix S1.

3.2. Timecourse

While high accuracy is a prerequisite for a valid model, a greater challenge is simulat-
ing the timecourse of HSR (Allopenna et al., 1998). The timecourse of HSR is a crucial
explanatory target in speech science, but previous deep learning models of speech (e.g.,
Kell et al., 2018; Nagamine et al., 2015) have not been applied to timecourse. Our mini-
mal model exhibits the correct qualitative pattern for phonological competition (Fig. 3).
It is not necessarily the case that any model that can map speech inputs to semantic out-
puts would exhibit human-like timecourse; in Appendix S1, we describe a high-accuracy
model with timecourse behavior that differs starkly from human performance. This sug-
gests that there are important architectural choices that underlie EARSHOT’s ability to
simulate the correct qualitative timecourse pattern of lexical access and competition
(Fig. 3B). First, it may be important that the input has a similar temporal resolution as
the speech signal. Transformations that remove/compress too much spectral detail, such

Fig. 3. Model performance. (A) Accuracy by epoch averaged over 10 models. When training resumed with
all items (epochs 8,001–10,000), high accuracy was achieved quickly for all talkers. (B) The timecourse of
competition for accurate trials, for two criterial competitor types. For a target (e.g., cat), “Cohort” represents
mean cosine similarity for words overlapping in the first two phonemes (can, castle, . . .). “Rhymes” rhyme
with the target (bat, sat, at, scat . . . ). “Unrelated” is the average for all words phonologically dissimilar
from the target. This pattern closely follows human performance (Allopenna et al., 1998). (C) For compar-
ison, we conducted simulations with the TRACE model, with its standard 212-word lexicon, 14-phoneme
inventory, and idealized “pseudo-spectral” inputs. Panel C (same data as panel D in Fig. 1) shows average
activations by competitor types for all possible pairs in the TRACE lexicon. Crucially, EARSHOT exhibits
the same rank ordering and similar timing for competitor types as the gold-standard TRACE model.
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as the Mel Frequency Cepstral Coefficient (MFCC) transformation used in the example
model in Appendix S1, may transform the information processing task in ways that depart
from the challenges faced by human listeners.

3.3. Hidden unit sensitivities

The next challenge is determining how the model works, with the aim of guiding
cognitive theories of HSR. Since the model is learning to map speech input to pseudo-
semantics, we also hypothesized that it might mediate that transformation by developing
internal phonetic encoding. To begin, we adapted two “selectivity indices” (SIs) used
with human electrocorticography data (Mesgarani et al., 2014). The Phonemic Selectiv-
ity Index (PSI) for a hidden unit-phoneme pair is the count of phonemes that evoke a
substantially weaker response in that unit compared with the target phoneme. For exam-
ple, given 39 phonemes, if a hidden unit responds more strongly to /p/ than any other
phoneme, its PSI for /p/ would be 38 (maximum). The Feature Selectivity Index (FSI)
does the same for features shared by classes of phonemes (e.g., nasal, labial, voiced).
The SI approach allows us to ask whether phonetic structure emerges as the model
learns to map speech to semantics, despite not being given explicit information about
phonetic features or phonemes. To calculate PSI and FSI, we tracked the absolute
amplitude of hidden node responses to each phoneme and feature over 100 ms. For
example, for unit 239, we would note its mean activation in response to /b/ from the
onset of /b/ to 100 ms later in all /b/-initial diphones. We would then subtract unit
239’s response to every other phoneme in turn from its response to /b/. For each differ-
ence >0.3, the PSI for {239 /b/} would be incremented. We repeated this for all 39
phonemes.

We used hierarchical clustering to sort hidden units based on SIs (Fig. 4). Approxi-
mately 50% of nodes exhibit structured responses in the SI time window (in the human
electrocorticography study our SI analyses are based on [Mesgarani et al., 2014], approxi-
mately 20% of electrodes met criteria for inclusion in SI analyses). The FSIs and PSIs
appear remarkably similar to those derived from electrodes recording from human supe-
rior temporal gyrus (Mesgarani et al., 2014), with selective responses to features and pho-
netically similar phonemes, but it is important to quantify that similarity.

We used a representational similarity analysis (RSA; Kriegeskorte, Mur, & Bandettini,
2008) to quantify similarity of feature and phoneme selectivity in EARSHOT and human
electrocorticography (ECoG) data (Mesgarani et al., 2014). On this approach, two systems
with different kinds and numbers of elements can be compared in terms of their
responses to classes of stimuli. We characterized EARSHOT’s response to each phonetic
feature as the mean vector of hidden unit responses when that feature is present (creating
a 14 [feature] 9 512 [hidden unit] matrix). This allowed us to compare the cosine simi-
larities of EARSHOT’s responses (or SIs) to each feature, and create a feature 9 feature
dissimilarity (1 ! similarity) matrix. We did the same with human ECoG data from Mes-
garani et al. (2014, graciously provided by Chang and Mesgarani) in terms of the vector
of electrode SIs in the presence of each feature, resulting in another feature 9 feature
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matrix. We then compared EARSHOT and STG electrode dissimilarity matrices for both
FSI and PSI. The results are summarized in Fig. 5 (see Appendix S1 for details), where
we see strong correlations between model and human responses to phonetic features and
phonemes.

(A)

(B)

Fig. 4. Phonetic selectivity revealed by hierarchical clustering. (A) Feature Selectivity Index (FSI) based on
hidden unit (x-axis) responses to phonetic features; for every hidden unit-feature pair, FSI was incremented
for every feature to which the hidden unit responded substantially more weakly (yellow indicates high selec-
tivity, with maximum FSI of 13, given 14 features). Vowel features pattern together (from high to back).
One hundred and fifty-six hidden units with strongly selective responses are included. (B) Phonemic Selectiv-
ity Index (PSI). High PSI indicates selective responses to specific phonemes. Maximum score is 38, given 39
phonemes. Two hundred and thirty-nine hidden units showing selective responses are included.
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(A) (B)

(C)

Fig. 5. Representational similarity analyses comparing EARSHOT and human neural responses. (A) Repre-
sentational Dissimilarity Matrices (RDMs) for feature selectivity indices (FSIs) for EARSHOT and human
STG ECoG data from Mesgarani et al. (2014). RDMs are created by calculating dissimilarity between vectors
of FSIs for each hidden unit or electrode for each feature (low values [darker] indicate high similarity). The
correlation between EARSHOT and STG RDMs was high: r = .895, p < 1 9 10!6 (based on a permutation
test; see Appendix S1). (B) RDMs for EARSHOT and STG PSIs were also highly correlated (r = .607,
p < 1 9 10!6). (C) A baseline RDM based on feature definitions for each phoneme. The correlation of this
phoneme-feature RDM with the EARSHOT and STG PSIs were similar to the EARSHOT-STG PSI correla-
tion (0.487 and 0.652, respectively; p < 1 9 10!6 for both).
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We cannot conclude that EARSHOT-ECoG similarities indicate that EARSHOT
directly implements mechanisms supporting HSR in the brain. However, the similarities
demonstrate that both systems are sensitive to the phonetic structure available in the
speech signal (again, even though EARSHOT is not trained on phonetic targets) and are
sensitive to the structure in similar ways. Together with the fact that EARSHOT exhibits
fine-grained timecourse of phonological competition similar to that seen in humans, simi-
larity in internal selectivity to phonetic information suggests that EARSHOT may be a
promising tool for discovering the mechanisms supporting HSR.

3.4. More complex hidden unit responses

Hidden units also have more complex dynamics than are revealed by the SIs (Fig. 6).
Some develop strong, onset-locked responses, while others develop responses that include
significant delays, and/or sustained responses. These response profiles suggest novel
hypotheses for human cortical responses that could be explored in electrocorticographic
recordings. The mapping from hidden states over time to semantic outputs likely depends
both on intuitive profiles like the time-locked responses assumed by the SI analyses and
on complex over-time patterns of combinations of those and other profiles. Additional
details of hidden unit profiles and responses are presented in Appendix S1.

4. Discussion

Decades after the discovery of the lack of invariance problem—the absence of invari-
ant cues to speech sounds (e.g., Joos, 1948; Liberman et al., 1952; Peterson & Barney,
1952)—speech science offers limited explanations of how humans achieve phonetic con-
stancy despite the many-to-many mapping between acoustics and percepts. Computational
models of HSR have provided little insight, since most current models sidestep the vag-
aries of the signal and use idealized, abstract elements such as phonetic features (McClel-
land & Elman, 1986), phonemes (Hannagan, Magnuson, & Grainger, 2013; You &
Magnuson, 2018), or human phoneme confusion probabilities (Norris & McQueen, 2008)
rather than real speech as input. Such assumptions can ultimately complicate rather than
simplify problems (Magnuson, 2008), as the details they bypass may contain constraints
essential to the mechanisms underlying human performance.

Complexity is a primary motivation for abstract inputs. As McClelland and Elman
(1986) argued, a computational model aimed at guiding a psychological theory must pri-
oritize psychological adequacy over computational adequacy. That is, such a model must
favor simplicity and understandability over full, end-to-end modeling when the latter
results in a model too complex to understand. However, we would expand beyond psy-
chological and computational adequacy when considering the tension between simplicity
and realism. We divide psychological adequacy into three parts. Behavioral adequacy is
the ability of a model to simulate key details of human performance. Developmental ade-
quacy is the ability of a model to learn as well as the degree to which learning by the
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Time since phoneme onset (msecs)
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(C)(B)(A)
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Fig. 6. Hidden unit response profiles based on absolute activation values. Over-time response profiles of exam-
ple hidden units for each phoneme (y-axis). (A) Time locked, discrete responses (~5% of units). (B) Time locked,
sustained responses (~20%). (C) Delayed responses (~35%). (D) Early-onset responses (~4%). (E) Post-onset
inactivation (~3%). (F) Complex responses (~29% of HUs). An additional ~4% are largely non-responsive.
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model is relatable to trajectories in human development. Explanatory adequacy is the
degree to which the mechanisms of the model are analyzable and understandable; a
model could have high adequacy in every other domain, but its utility in guiding theories
of human capabilities would be limited if the mechanisms implemented in the model are
inscrutable. We would also complement computational and psychological adequacy with
neural adequacy: the ability of the model to relate to knowledge or theories of the neuro-
biological mechanisms underlying the modeled capacities.

We demonstrated that borrowing one element from ASR—long short-term memory
(LSTM) nodes (Hochreiter & Schmidhuber, 1997)—is sufficient to allow a shallow recur-
rent network to learn to map from speech to arbitrary outputs (pseudo-semantic vectors),
while also demonstrating a timecourse of lexical activation and competition (Fig. 3) that
resembles that observed in human subjects and current gold-standard models of HSR
(Allopenna et al., 1998). This represents a major advance in computational adequacy;
EARSHOT is capable of performance with real speech that is unprecedented for a simple
model aimed at guiding cognitive theory. On the other hand, EARSHOT’s modest gener-
alization to excluded talkers and excluded words from trained-on talkers should give us
pause. Low and variable generalization may indicate that the model memorizes training
patterns to some degree. In ongoing work, we are striving to use more variable inputs
and ultimately will train the model on large numbers of human talkers. It will also be
necessary to assess EARSHOT’s ability to account for the full range of phenomena that
models that work on abstractions of the speech signal (e.g., TRACE [McClelland &
Elman, 1986]; TISK [Hannagan et al., 2013]; and Shortlist B [Norris & McQueen, 2008])
are able to simulate.

EARSHOT also has the potential to address developmental adequacy, since it is a
learning model. In this preliminary work, we have not yet attempted to make the training
of the model realistic or to link its development to human developmental trajectories.
This will be a priority in future work.

Regarding EARSHOT’s explanatory adequacy, we do not yet fully understand how the
model succeeds in learning to map speech to semantics. We demonstrated that we can be-
gin to unpack how EARSHOT learns to map speech to semantics by using techniques
from human electrocorticography (Mesgarani et al., 2014) to track responses of hidden
units to specific phonetic features and phonemes (Figs. 4–6). EARSHOT’s emergent sen-
sitivity to phonetic structure, despite receiving no explicit phonetic training, provides pre-
liminary clues as to how such a simple learning system could achieve a speech-to-
semantics mapping. Of course, fully understanding how the model works will require
analyses beyond the phonetic structure apparent from the feature and phoneme SIs. First,
it is apparent from the variation in hidden unit response profiles (Fig. 6) that the phonetic
responses of the hidden units are substantially more complex than the selectivity analyses
suggest. We expect that complex population responses are essential to how the model
transforms spectral slices to semantics (rather than a system where individual units func-
tion as simple detectors for specific phonemes; see Morcos, Barrett, Rabinowitz, & Botvi-
nick, 2018). Second, a full understanding of the model will also require unpacking the
transformation from hidden unit states to semantic outputs. However, even the
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preliminary similarity of EARSHOT’s hidden unit responses to human electrocortico-
graphic data suggests that such a model holds promise for addressing neural adequacy.
Indeed, an intriguing possibility is that the variations in response profiles observed could
generate hypotheses for potential response profiles in human cortical encoding of speech.

5. Conclusions

By borrowing one minimal element from ASR (long short-term memory nodes), EAR-
SHOT opens new territory to computational exploration of HSR thanks to its ability to
operate on real speech inputs. The fundamental challenges of the lack-of-invariance prob-
lem, which have been outside the scope of cognitive models of HSR for decades, are
now addressable. These include variation in talker characteristics, speaking rate, and
acoustic context, and integration of theories of development and processing. Simulations
can be conducted with the same materials presented to human listeners, instead of ideal-
ized, abstract analogs of those materials. Finally, the fact that the distributed phonological
code that emerges as the model learns to map speech to semantics resembles responses
observed in human cortex (Mesgarani et al., 2014) demonstrates the promise of this
approach as a testbed for theories of neurobiological mechanisms that may support HSR.
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Note

1. Because the output vectors are arbitrary, they could stand for anything, including
discrete word form patterns (analogous to lexical nodes in TRACE [McClelland &
Elman, 1986]). Future work will use distributed semantic vectors based on corpus
analyses.
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online in the Supporting Information section at the end
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Appendix S1. Supplementary methods, details, and
results.
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