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Auditory cortex is essential for mammals, including rodents, to detect temporal “shape” cues in the sound envelope but it remains
unclear how different cortical fields may contribute to this ability (Lomber and Malhotra, 2008; Threlkeld et al., 2008). Previously, we
found that precise spiking patterns provide a potential neural code for temporal shape cues in the sound envelope in the primary auditory
(A1), and ventral auditory field (VAF) and caudal suprarhinal auditory field (cSRAF) of the rat (Lee et al., 2016). Here, we extend these
findings and characterize the time course of the temporally precise output of auditory cortical neurons in male rats. A pairwise sound
discrimination index and a Naive Bayesian classifier are used to determine how these spiking patterns could provide brain signals for
behavioral discrimination and classification of sounds. We find response durations and optimal time constants for discriminating sound
envelope shape increase in rank order with: A1 ! VAF ! cSRAF. Accordingly, sustained spiking is more prominent and results in more
robust sound discrimination in non-primary cortex versus A1. Spike-timing patterns classify 10 different sound envelope shape se-
quences and there is a twofold increase in maximal performance when pooling output across the neuron population indicating a robust
distributed neural code in all three cortical fields. Together, these results support the idea that temporally precise spiking patterns from
primary and non-primary auditory cortical fields provide the necessary signals for animals to discriminate and classify a large range of
temporal shapes in the sound envelope.
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Introduction
Sound temporal cues including periodicity and envelope shape
are essential for perception and classification of sound sequences

including speech and other vocalizations (Drullman et al., 1994;
Shannon et al., 1995; Irino and Patterson, 1996; Seffer et al.,
2014). Periodicity cues are created by the repetition of sound
onsets at regular time intervals and can induce rhythm, rough-
ness and pitch perceptions for periodicities of up to "20, 200,
and 800 Hz, respectively (Joris et al., 2004). In contrast, shape
temporal cues include the rising and falling slopes and the dura-
tion of change in the sound envelope amplitude and are perceived
as envelope timbre and loudness of sound (Long and Clark, 1984;
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Significance Statement

Functional hierarchies in the visual cortices support the concept that classification of visual objects requires successive cortical
stages of processing including a progressive increase in classical receptive field size. The present study is significant as it supports
the idea that a similar progression exists in auditory cortices in the time domain. We demonstrate for the first time that three
cortices provide temporal spiking patterns for robust temporal envelope shape discrimination but only the ventral non-primary
cortices do so on long time scales. This study raises the possibility that primary and non-primary cortices provide unique temporal
spiking patterns and time scales for perception of sound envelope shape.
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Irino and Patterson, 1996; Turgeon and Bregman, 2001;
Friedrich and Heil, 2016).

Temporally precise neuronal responses vary with sound enve-
lope shape and periodicity but how this encoding changes along
the ascending auditory pathway remains unknown. The latency
of response provides a potential neural code of the rising slope of
the sound envelope and becomes increasingly more sluggish as
one ascends the auditory pathway (Heil, 2003). This ability
breaks down as sound periodicity is increased with upper limits
of 300, 100, and 20 Hz for auditory nerve, midbrain and cortex,
respectively (Joris et al., 2004). For example, selectivity for sound
envelope shape is limited to sound sequences with periodicities
up to "100 Hz in midbrain (Krebs et al., 2008; Zheng and Escabí,
2008) and "20 Hz in cortex (Lu et al., 2001; Engineer et al., 2014;
Lee et al., 2016). Moreover, single neurons respond indepen-
dently to sound envelope shape and periodicity in midbrain and
primary auditory (A1) cortex (Zheng and Escabí, 2013; Lee et al.,
2016) but have joint sensitivities to these same temporal cues at
higher non-primary cortical levels suggesting a functional hier-
archy (Lee et al., 2016).

The rat is an excellent model to examine mechanisms under-
lying perception of temporal sound cues. Rats, like humans, have
A1 and multiple non-primary cortices with neurons that are to-
pographically organized to sense sound frequency (Formisano et
al., 2003; Talavage et al., 2004; Kalatsky et al., 2005; Higgins et al.,
2010). Rats discriminate sounds based on temporal cues (Schulze
and Scheich, 1999; Gaese et al., 2006; Kelly et al., 2006) and si-
lencing of A1 and non-primary auditory cortices abolishes this
ability (Threlkeld et al., 2008). In rat A1 and two non-primary
cortices, ventral auditory field (VAF) and caudal suprarhinal
(cSRAF) auditory field, the variance (jitter) in timing of spikes
synchronized to sound (aka, sound encoding time) changes with
sound envelope shape, providing a potential temporal code for
shape (Lee et al., 2016). Here, we examine the possibility that A1,
VAF, and cSRAF could provide unique temporal codes for dis-
criminating and classifying sound based on the temporal shape of
the sound envelope.

Materials and Methods
Surgical procedure and electrophysiology. Data were collected from 16
male Brown Norway rats (age 48 –100 d). All animals were housed and
handled according to a protocol approved by the Institutional Animal
Care and Use Committee of the University of Connecticut. Craniotomies
were performed over the temporal cortex. All recordings were obtained
from the right cerebral hemisphere. Anesthesia was induced and main-
tained with a mixture of ketamine and xylazine throughout the surgery
and during optical imaging and electrophysiological recording proce-
dures. A closed-loop heating pad was used to maintain body temperature
at 37.0 # 2.0°C. Dexamethasone and atropine sulfate were administered
every 12 h to reduce cerebral edema, and secretions in the airway, respec-
tively. A tracheotomy was performed to avoid airway obstruction and
minimize respiration-related sound.

Wide-field intrinsic optical imaging. The goal of this study was to de-
termine whether and how single-unit spiking responses in A1, VAF, and
cSRAF could be used to discriminate and classify sounds. Wide-field
intrinsic optical imaging was used to map tone responses and to deter-
mine cortical areas corresponding to A1, VAF, and cSRAF based on
direction of tone frequency gradient, as detailed previously (Lee et al.,
2016). Briefly, intrinsic signal responses were imaged with a Dalsa 1M30
CCD camera with a 512 $ 512 pixel array covering a 4.6 $ 4.6 mm 2 area.
Surface vascular patterns were visualized using a green (546 nm) inter-
ference filter at 0 !m plane of focus. Intrinsic activity was recorded at a
plane of focus of 600 !m below the surface blood vessels using a red (610
nm) interference filter. Cortical field areas were determined with post hoc

analysis of the wide-field intrinsic image and aligned with stereotaxic
positions for subsequent electrode recordings in each field.

Sound design and delivery. Three primary types of sound were used in
this study including: (1) periodic tone sequences for wide-field mapping
of cortical fields, (2) transient tones to assess single-unit sound frequency
response sensitivities, and (3) periodic shaped noise sequences to assess
sound envelope shape sensitivities. Sounds were generated by Beyer DT
770 dynamic speaker drivers housed in a custom designed sealed enclo-
sure and delivered via tubes positioned "1 mm inside the ear canal.
Sound delivery was calibrated between 750 and 48,000 kHz (%5 dB) in
the closed system with a 400 tap finite impulse response inverse filter
implemented on a Tucker Davis Technologies (TDT) RX6 multifunction
processor. Sounds were delivered through an RME audio card or with a
TDT RX6 multifunction processor at a sample rate of 96 kHz. The sound
card and sampling frequency used produce tones and noise with minimal
distortions for sound frequencies up to 45 kHz (SNR & 100 dB, THD !
'100 dB). All sounds were presented with matched sound level to both
ears with an interaural level difference (ILD) equal to zero to approxi-
mate a midline sound position (Higgins et al., 2010).

Periodic tone sequences used for wide-field optical response mapping.
Wide-field intrinsic optical imaging was performed to locate A1, VAF,
and cSRAF. Wide-field optical images were obtained in response to con-
tinuous tone sequences consisting of 16 tone pips (50 ms duration, 5 ms
rise and decay time) delivered with a presentation interval of 300 ms and
presented with matched sound level to both ears. Tone frequencies were
varied from 2 to 32 kHz (one-quarter-octave steps) in ascending and
subsequently descending order, and the entire sequence was repeated
every 4 s. Hemodynamic delay was corrected by subtracting ascending
and descending frequency phase maps to generate a difference phase map
(Kalatsky et al., 2005).

Pseudorandom tone sequences used for spike-rate response recordings.
Multiunit spike-rate response sensitivities to frequency and sound level
were probed with transient pure tones (50-ms duration, 5 ms rise time)
that varied over a frequency range of 1.4 – 44.2 kHz (in one-eighth-octave
steps) and sound pressure levels (SPL) from 5 to 85 dB SPL in 10-dB
steps. FRA-probing tones were presented in pseudorandom sequence
with an intertone interval of 300 ms. As shown previously for this same
dataset, spectral and temporal response characteristics obtained from
frequency response areas confirm that the populations of cells we desig-
nated as belonging to A1, VAF, and cSRAF are consistent with those
described previously (Lee et al., 2016).

Periodic noise-burst sequences probe spike-timing responses. The peri-
odic noise burst sounds used have been described in detail previously
(Lee et al., 2016) and only a brief account is provided. Periodic noise
burst sequences consisted of four shaped noise bursts delivered at a rate
of twice per second (2 Hz) for a total duration of 2 s. Each sequence
variation was separated by a 1 s silent gap. All sequences were delivered at
65 dB SPL peak amplitude and 100% modulation depth. The noise car-
riers were varied (unfrozen) across trials and for individual sound bursts
to remove spectral biases and to prevent repetition of fine-structure tem-
poral patterns. This guarantees that, on average, the only physical cues
available to each neuron arise from the temporal envelope.

The envelopes of the periodic noise burst sequences were generated by
convolving an eighth order B-spline filter function with a 2 Hz periodic
impulse train (Lee et al., 2016). The B-spline filter has a single parameter,
fc, that is used to vary the envelope shape (i.e., duration and slope), as
described in detail previously (Lee et al., 2016). This sound design is
advantageous as it allows us to independently vary sound envelope shape
and the modulation frequency (repetition rate) of the sound burst. In the
current study, there were 10 different variations of the sound envelope
shape with fc ranging from 2 Hz to 64 Hz. Sound burst duration for each
fc was measured using 1 SD at 50% amplitude width (1 tail). For these
sounds, the duration of the sound burst decreased as the fc was increased
from 2 to 64 Hz (Table 1). Conversely, the rate of rise and decay (i.e.,
slope) of the sound envelope increases as fc increased from 2 to 64 Hz
(Table 1). These sounds were presented in a pseudorandom shuffled
order of fc until 10 trials were presented under each condition. Sound
bursts in each sequence were delivered at 2 Hz, as this periodicity gener-
ates highly reliable trial-to-trial responses (Lee et al., 2016).
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Single-unit recording and sorting. Data from 223 single neurons were
examined in the present study. Extracellular electrophysiological re-
sponses were recorded with 16 channel tetrode arrays (4 $ 4 recording
sites across 2 shanks, with each shank separated by 150 !m along the
caudal-rostral axis, 1.5–3.5 M( at 1 kHz, NeuroNexus Technologies).
Data from penetration depths of 400 – 650 !m relative to the pial surface
were included in the present study, as this corresponds to layer 4 where
ventral division auditory thalamic neurons project (Storace et al., 2010,
2011, 2012). Recorded neurons were assigned to a cortical field according
to wide-field image and stereotaxic positions, as described in detail pre-
viously (Lee et al., 2016).

Candidate action potential waveforms were first identified using cus-
tom software in MATLAB (MathWorks). Continuous voltage traces
were digitally bandpass filtered (300 –5000 Hz) and the cross-channel
covariance was computed across tetrode channels. The instantaneous
channel voltages across the tetrode array that exceed a hyper-ellipsoidal
threshold of f ) 5 (Rebrik et al., 1999) were considered as candidate
action potentials. This method takes into account cross-channel correla-
tions between the voltage waveforms of each channel and spikes are
detected only if the instantaneous voltage power across the composite
tetrode array exceed the average voltage power by a factor of f 2) 25.
Spike waveforms were aligned and sorted using peak voltage values and
first principle components with automated clustering software (KlustaK-
wik software; Harris et al., 2000). Sorted neurons were classified as single
neurons if the waveform signal-to-noise ratio exceeded 3 (9.5 dB) as
detailed previously (Lee et al., 2016). For all data analyses, the first 500 ms
was removed from each spike train to restrict analysis to the adapted
steady-state segments of the neural responses.

Response timing and magnitude measures. To quantify spike-timing
patterns of neurons over the course of their response in relation to the
time course of each sound burst in a sequence we computed population
modulation period histogram (i.e., “response histogram” or “period his-
togram” for short) for the population of neurons from each cortical field
(Figs. 1, Fig. 2). A similar approach has been used previously to quantify
temporal response patterns in inferior colliculus (Zheng and Escabí,
2008) and cortex (Malone et al., 2007, 2015). The period histogram is
constructed by aligning the spike-time histogram relative to the sound
onset. Because in this study, sounds were delivered at a repetition rate of
2 Hz all period histograms lasted 500 ms. This repetition frequency was
chosen because it yields highly reliable trial-by-trial responses in the
three cortices examined here (Lee et al., 2016) and in A1 of awake mon-
keys (Malone et al., 2015). Population period histograms were computed
by summing responses across all cycles for all neurons for a given cortical
field, binned in 2 ms windows (Fig. 1).

To determine regional differences in temporal response attributes, we
quantified peak latency, duration, and amplitude for each population
histogram, by determining the spike-rate responses that were signifi-
cantly greater than the baseline level for each cortical field. For all anal-
yses and simulations in this study the first 500 ms of the response to a
given sound burst sequence was removed, as in a prior study (Lee et al.,
2016). Next, baseline spike rate was estimated from a 50 ms window of
the histogram corresponding to the end of the period between sounds.
The population histogram was bootstrapped 100 times to estimate sig-
nificant response level, variance of the response duration, and peak am-
plitudes. The peak spike rate was determined as the maximum rate in the
period histogram (Fig. 1, asterisks). The response delay was measured as
the time difference between the response peak and the stimulus peak
(Fig. 1, length of blue bars indicates durations). Response duration was

estimated by determining the period during which the spike rate in-
creased significantly ( p ! 0.05, Student’s t test) from baseline spike rate.

Neural sensitivity index metric. To determine how single neuron spik-
ing patterns might be integrated or decoded by subsequent stages of the
auditory pathway to accurately discriminate pairs of sounds, we devel-
oped a normalized spike distance metric (Victor and Purpura, 1997; van
Rossum, 2001). We examined the degree of sound discrimination (Fig.
3A–F ) as well as the time constants needed to obtain optimal sound
discrimination (Fig. 4). Our metric is motivated by the spike-distance
metric of Van Rossum (2001), which uses an exponential smoothing
kernel to change the temporal resolution for integrating spikes in spike
trains. Our distance metric also uses multiple-trial responses. The dis-
tance metric was normalized by trial variances to compute a sensitivity
index or discrimination index as commonly used to measure behavioral
discriminability (Swets et al., 1978). Pairwise sound discrimination indi-
ces (D*) for single neurons’ spike trains were determined and optimized
as detailed below (Eqs. 1– 8). Here, a D* ) 1 corresponds "70% accu-
racy, which is typically considered a critical limit for discriminating a
signal behaviorally (von Trapp et al., 2016).

To calculate spike distance ( D), we consider two smoothed response
dot rasters, fk(t) and gk(t) to be compared, where k is the response trial
number (N ) 10 trials total), f represents the response to stimulus 1, and
g is the response to stimulus 2. Both fk(t) and gk(t) are obtained by
convolving the individual spike train from a given trial with an exponen-
tial kernel h"(t) with a smoothing time constant ". The spike distance ( D)
between the kth and lth trial of f and g is as follows:

Dfk,gl+", #
1

"
!fk+t, $ gl+t, !2 #

1

"" +fk+t, $ gl+t,,2dt, (1)

where #!# is the Euclidian norm and the average spike train distance across
all trials is as follows:

D! f,g+", #
1

N2$
k

$
l

Dfk,gl+",, (2)

where N is the number of trials. In the above, note that Equation 1
requires 2 N convolutions along with N 2 norm calculation for comput-
ing the spike train distance between trials (Eq. 2). The average distance
can be efficiently estimated by and is equivalent to computing the
distance between the poststimulus time histograms (PSTHs) of f and
g. That is,

D! f,g+", # Df!, g!+",, (3)

and we use this alternative formulation to minimize computational cost
(2 N convolutions and 1 norm calculation).

Because our goal is to normalize the spike distance according to a
sensitivity index measure, we next estimated the trial variance of f and g.
To do so, we note that the individual trial responses:

fk+t, # f+t, % nk+t,, (4)

gk+t, # g+t, % mk+t,, (5)

where nk(t) and mk(t) represent the variable noise component for each of
the smoothed response trial of f and g respectively. The response variance
of f(t) at a specific temporal resolution is estimated as follows:

Table 1. Onset response time windows vary with sound shape and across cortical fields

fc 2 4 6 8 11 16 23 32 45 64 Mean (SEM)

Half-duration 80 40 28 20 14 10 7 5 3 2
Slope 0.32 0.66 0.91 1.33 1.90 2.62 3.70 5.14 7.52 10.07
A1 29.6 24.1 23.5 20.1 20.5 18.9 18.6 18.0 16.5 15.4 21 (1)
VAF 52.4 31.6 33.7 38.5 23.9 27.3 20.9 19.4 18.8 18.0 29 (3)
cSRAF 180.7 211.2 194.9 33.0 33.2 23.7 19.3 18.7 17.6 15.8 75 (27)

Onset response time windows, determined as described in Materials and Methods, vary with sound burst half-duration and slope as determined by the sound shaping filter (fc ). Onset response times are given for each sound burst variation
and cortical field.
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and similarly for g(t)
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Finally, the spike distance is normalized by the trial variances of f and g
yielding the sensitivity index (D*) or “discrimination index” (Fig. 3).

D*+", # %2
Df!,g!+",

& f
2+", % &g

2+",
, (8)

which is time-scale dependent. The exponential time constant, ", deter-
mines the temporal resolution or integration time of the distance metric.
For large values of ", the signals being compared contain mostly slow
fluctuations in the spike rate (Fig. 3 E, F ). For small ", the spike distance
metric is sensitive to the precise timing of spikes. We varied " in 16
logarithmic intervals from 1 to 256 ms, and computed discrimination
index (D*) for each " and each reference sound (Fig. 4; reference
sound fc ) 64 Hz) and then determined the time constant (" or tau)

Figure 1. Population average period histogram of responses from (B) A1 (64 neurons), (C) VAF (104 neurons), and (D) SRAF (65 neurons) for all 10 variations of sound shape stimulus (A). Asterisks
mark the peak of the period histogram. The blue bars indicate the difference between the peak PSTH and peak of sound. Red curves outline the envelope of the sound. Period histogram duration
varies markedly with sound shape in SRAF and VAF and less so in A1. A1 responses remain precise across all shapes.
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that yields the optimal (aka, maximal) sound discrimination (Fig. 4,
asterisks). The same approach was used for all possible sound pairings
and sound references and discrimination indices are plotted in a ma-
trix (Fig. 5). A discrimination index of zero was obtained when the
two response conditions were identical (aka, sound vs itself) and
plotted on the diagonal of the corresponding discrimination index
matrix (Fig. 5, diagonal cells). Using a " of 256 ms, the time constant
is longer than half of the cycle period (500 ms), and the spike distance

is closely related to the difference in the total spike rates. The range of
time-constants tested enabled us to test the role precise spike timing
at one extreme and the role of slow fluctuations in spike rate at the
other extreme might play for neural discrimination of temporal en-
velope cues.

As " approaches the total length of the spike train (2 s), the spike
distance is biased and yields large values. When comparing two spike
trains, slight difference in the spike rate will contribute to a large spike-

Figure 2. Effects of changing sound shape on population histogram response parameters including: response delay, response duration, and peak spike rate. All metrics are derived from
population period histograms shown in Figure 1. A, Response peak delay increases significantly ( p ! 0.001) with sound shape fc in all three cortical fields. The corresponding log-linear regression
slopes for A1, VAF, and SRAF are as follows: '122, '113, and '80, respectively; r 2 ) 0.82, 0.83 and 0.89, respectively. B, Cumulative probability for response delay. C, Population response delays
(averaged across all sound shapes) follow a rank order increase with: A1 ! VAF ! SRAF (See Results for statistics). D, Response duration decreases proportionally and logarithmically with sound
shape fc and sound burst duration (Table 1) in all three cortical fields. The corresponding regression fits are significant ( p ! 0.001) and slopes for A1, VAF, and SRAF are as follows: '5, '20, and
'85, respectively (r 2 ) 0.81, 0.90 and 0.61, respectively). E, Cumulative probability distributions for response duration indicate that A1 is more likely to have shorter (!50 ms) response durations
than VAF and cSRAF. F, Across all sound conditions the average response duration decreases significantly (F(2,2997) ) 13.58, p ! 0.001) in rank order with A1, VAF, and cSRAF mean (SEM) response
durations of: 19.6 (%0.1), 28.9 (%0.4), 53.6 (%1.9), respectively. G, Population period histogram peak spike rate changes significantly ( p ! 0.001) as a function of sound temporal shape fc in all
fields (A1, VAF, cSRAF: slope ) 11.13, 8.61, and 5.77 respectively; r 2 ) 0.632, 0.740 and 0.886 respectively). H, Cumulative probability relative to the peak spike rate of period histogram indicates
lower peak spike rates in SRAF than other fields. I, Mean period histogram peak spike rate different across cortical fields (F(2,2997) ) 1554, p ! 0.001) follow a rank order of A1 & VAF & cSRAF with
corresponding mean (SEM): 44.8 (% 0.28), 47.88 (% 0.2), and 33.6 (% 0.1) Hz, respectively. **p ! 0.01, ***p ! 0.001.
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distance metric because there is not enough time for the exponential
function to decay. To minimize this confound, we extended the length of
spike train by synthesizing a periodic spike train with matched temporal
statistics to the measured data (Zheng and Escabí, 2008). For each cycle
of the synthetic periodic spike train, both the spike rate and spike times
were randomly sampled from the original spike train. This process was
repeated to generate periodic spike trains with durations of 100 s.

Role of onset versus secondary spikes. To compare the contribution of
onset and sustained spikes to the discriminability of the periodic burst
responses, we decomposed the spike trains into a sequence of onset and
sustained spikes (Fig. 6) and determined how well sounds were discrim-
inated by each response component (Fig. 7). Spikes were considered
onset spikes only if their timing fell within a window starting at 50% of

the peak evoked spike rate preceding the peak, and ending at the mini-
mum in the histogram within 50 ms following the peak. A single onset
response time window was measured for each fc condition and each
region from the corresponding population period histogram (Table 1).
Spikes falling within this time window were initially classified as possible
onset spikes and the onset response time window varied with the sound
burst fc and duration (Table 1). Furthermore, the onset response time
window varied between cortical fields for many sound burst conditions
(Table 1).

Onset spikes are composed of a mixture of both stimulus-evoked and
spontaneous activity. To estimate the contribution of both sources of
spiking, we measured the baseline spiking rate from a 50 ms window
centered a half cycle before the stimulus peak, and assumed the baseline

Figure 3. Example of computing optimal discrimination indices for two sound shapes and two different time constants. A, B, Responses from a single neuron in cSRAF to sounds shaped with fc

of 8 Hz (A) and 64 Hz (B), respectively. Over 10 trial repeats, the sound envelope of the sound pressure waveform was the same but the underlying noise carrier was varied unfrozen noise (see
Materials and Methods). A sequence of long duration sound bursts (A, top green envelope; fc ) 8 Hz) elicited sustained spiking followed by reduced spontaneous activity evident in the dot raster
plot (A, bottom). A sequence of short duration sound bursts (B, top red envelope; fc ) 64 Hz) elicited transient phase-locking of spikes to sound onsets in the dot raster (B, bottom). C, D, Top, Color
rendering of raster plots in A and B, respectively, convolved with an exponential decay function with time constant (" or Tau) of 64 ms. C, D, Bottom, Sum of trials in color plot above. E, F, Top, Color
rendering of raster plots in A and B, respectively, convolved with an exponential decay function with time constant (") of 256 ms. E, F, Bottom, Sum of trials in color plots above. The pairwise
discrimination of sound bursts in A and B, changes from optimal to suboptimal with discrimination indices of 1.52 and 1.27, respectively, when the smoothing time constant is changed from 64 to
256 ms in this example. A time constant of 256 ms smooths spikes over more than half of the cycle period (500 ms) for a 2 Hz sound sequence and the resulting signal approaches a spike-rate signal.
Thus, a more resolved time scale improves sound discrimination in this example.

6972 • J. Neurosci., August 1, 2018 • 38(31):6967– 6982 Osman et al. • Classifying Sound Shape in Auditory Cortex



spike rate during the onset window varied about the mean spontaneous
rate according to a Poisson distribution. Onset spike rates exceeding the
0.001% criterion level of this distribution were therefore assumed to
include an additional contribution of evoked activity above the sponta-
neous rate. Accordingly, we categorized a subset of the onset spikes as
spontaneous, by randomly sampling from the onset spikes with a spike
rate up to the 0.001% criterion level. All remaining spikes were consid-
ered evoked onset spikes. Finally, the spontaneous onset spikes were
added to the secondary spike train. In the remainder of this manuscript,
we use the term “onset” spikes to denote the evoked onset spikes only.

Sound classification based on spike timing and spike-rate codes
To further explore the role of precise spike timing and spike-rate codes in
neural classification of temporal envelope cues, we used a naive Bayes
classifier to read the neural spike trains and classify sounds in a 10-sound

category identification task (Fig. 8). Sound categories consisted of the 10
temporal envelope shape (aka, fc) conditions tested and the classifier was
required to identify the correct sound that was delivered using single
response trials.

Prior studies have examined how single auditory neuron spike output
could be used to classify sounds (Larson et al., 2009; Bizley et al., 2010;
Schneider and Woolley, 2010; Carruthers et al., 2015). In this study, we
examined potential classification of temporal envelope cues based on
single trial responses at "5 ms temporal resolution. Furthermore, the
multi-neuron classifier described below used the nonredundant re-
sponse information between neurons to provide a statistically robust
approach for testing spike-timing-based classification.

In the first implementation, we used the spike timing activity of single
neurons with preserved temporal precision (i.e., temporal code) to iden-

Figure 4. Determining time constants yielding optimal discrimination index. Discrimination indices for example neurons from A1, VAF, and cSRAF (A–C, respectively). The reference sound for
pairwise comparisons has a shape fc of 64 Hz. Pairwise comparisons are made between nine different sound combinations with varied shape fc (2– 45 Hz). Discrimination indices are computed for
16 different time constants (2–256 ms). Asterisks indicate optimal discrimination for one set of sound shape comparisons (fc of 2 vs 64 Hz, red curves).

Figure 5. Optimal discrimination indices and time constants used for a population of neurons in A1, VAF, and SRAF. A–C, Pairwise matrices of optimal discrimination indices. A1 and VAF have
slightly ( p ! 0.05) higher mean discrimination than cSRAF on average for all 45 pairwise discriminations (F(2,1323) ) 13.58, two-way ANOVA) with mean (SEM) discrimination indices in A1, VAF,
and cSRAF of: 0.97 (% 0.01), 0.98 (%0.01), and 0.92 (%0.01), respectively. For sound pairs with fc !11 Hz, discrimination indices are rank ordered with cSRAF & VAF & A1 and corresponding
mean (SEM) discriminations of: 0. 99 (%0.07), VAF: 0.97 (%0.06), and 0.94 (%0.04), respectively. D, Population mean and SEM of optimized discrimination indices for pairwise comparisons where
the reference sound fc is 64 (data correspond to matrix area indicated with overlaid black rectangles in A–C). Blue, green, and red lines correspond to A1, VAF, and cSRAF, respectively. E–G, Pairwise
matrices of optimal time constants for sound discrimination. VAF and cSRAF have higher Tau (see Results). H, Population mean and SE of time constants for region outlined in black in E–G in A1
(blue), VAF (green), and cSRAF (red). A–C, E–G, Dark Blue voxels correspond to conditions were discrimination indices (D*) are equal to zero and the asterisk indicates the highest value in the matrix.
E–G, Pairwise time constants used to achieve optimal discrimination indices in corresponding cortical fields. ***p ! 0.001. For this range of fc conditions, Time constants are rank ordered and
increasing with A1 ! VAF ! cSRAF (Wilcoxon rank-sum, p ! 0.01).
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Figure 6. Spike-timing dot rasters of an example cSRAF unit showing the separation of onset and sustained (secondary) spike time responses to 10 trial repeats for 10 different sound envelopes
(fc ranging from 2 to 64 Hz). A, Dot raster showing all spikes, (B) onset spikes, and (C) secondary spikes.

Figure 7. Optimal discrimination indices using onset and sustained spikes for a population of neurons in A1, VAF, and cSRAF. A–C, Onset spike population mean optimal discrimination index in
A1, VAF, and cSRAF respectively. D, For the matrix regions outlined in black in A–C, population mean and SE of optimal onset discrimination indices are plotted for A1 (blue), VAF (green), and cSRAF
(red). E–G, Sustained spikes population mean optimal discrimination indices in A1, VAF, and SRAF. H, For the matrix regions outlined in black in E–G, population mean and SE are plotted for each
cortical field using the same color convention. The secondary response discrimination performance changes marginally with fc (F(8,1323) ) 41.96, p ! 0.05, two-way ANOVA) and between cortical
fields (F(2,1323) ) 44.76, p ! 0.05, two-way ANOVA; H ). A–C, E–G, Dark blue voxels correspond to conditions were discrimination indices (D*) are equal to zero and the asterisk indicates the highest
value in the matrix. *p ! 0.05, **p ! 0.01, ***p ! 0.001.
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tify each of the 10-alternative temporal sound shapes (aks, 10 fc condi-
tions) and assessed the average performance (Fig. 8A–H ). A Bernoulli
Naive Bayes classifier (McCallum and Nigam, 1998) is used to read out
the spike trains from individual neurons to categorize the sound shape.
The classified shape condition (s) is the one that maximizes posterior
probability for a particular response according to:

s # argmax
s)-1:10.

&
i

ps,i
ri ! +1 $ ps,i,1'ri, (9)

where s includes the 10 shape conditions to be identified, ri is the neu-
ron’s response in the ith time bin and ps,i is the probability that a partic-
ular shape, s, generates a spike (1) or no spike (0) in a 5 ms temporal bin
(ith time bin). It is important to note that this approach is advantageous
because it allows us to determine the probability that each spike in a
precise spike train encodes a particular sound shape. In practice, ps,i

corresponds to the period histogram for the ith shape condition where
the total probability mass at each time bin has been normalized for unit
probability. The normalized period histogram was interpolated using
piecewise cubic spline to increases the temporal bin size resolution to 1
ms. The interpolated data were regularized by smoothing the raw period
histograms with a 2 ms exponential function, which helps reduce estima-
tion noise due to limited training data and avoid having zero values that
will cause errors during the log likelihood calculation. Furthermore, the
smoothing function limits the precision of the spiking activity to "5 ms
temporal resolution is similar to that used previously to successfully
demonstrate classification of vocalizations in rat A1 (Engineer et al.,
2008). The classifier performance was tested using a cross validation
approach in which a single randomly selected trial from each shape con-
dition was used for validation and the remaining response trials (9 total)
were used to generate ps,i and subsequently classify each of the validation
responses. The procedure was bootstrapped 500 times, which allowed us
to estimate the average and SE on the classifier performance.

In the second implementation, we tested the classifier performance
that could be achieved for a rate code. For this scenario, the classified
shape is the one that maximizes the posterior probability

s # argmax
s)-1:10.

&
i)l

4

ps+ri,, (10)

where ps is the spike count probability distribution function measured
over a 500 ms response cycle and ri is the neuron’s response (i.e., the spike
count for the ith 500 ms stimulus cycle). In the above, the posterior
probabilities are measured and accumulated over each of the four re-
sponse cycles in the sound. Because the sounds are delivered at 2 Hz (500
ms period) there is no information available from the temporal response
pattern that could contribute to the classifier results and thus the classi-
fier contains only rate information. The spike count distribution ps(k)
was approximated as a Poisson model because it provided a good fit to
spike-rate data (N ) 223, ' 2(df )50) ! 11.26, p ! 0.05, ' 2 test). Vali-
dation and classification was performed as for the spike-timing classifier
by reserving a single trial from all shape conditions for validation and the
remaining trials for training. The procedure was then bootstrapped 500
times to determine the average and SE on the classifier performance.

Multi-neuron classifier
We next extended the single-neuron classifiers to the multi-neuron case
to determine how neural population activity contributes to classification
of 10 temporal sound shapes (aks, 10 fc conditions) and assessed the

average performance (Fig. 8I–P). For the multi-neuron classifier, the
spatiotemporal activity pattern from multiple neurons within a single
cortical field was pooled for classification. This procedure treats neurons
separately and preserves any stimulus information available from indi-
vidual neuron responses. By design, the naive Bayes classifier treats re-
sponses bins from different neurons as if they are independent. This
property allows the classifier to take advantage of any independent and
nonredundant responses within the population to build more robust
classification. For the spike-timing population classifier, the classified
shape is the one that maximizes the posterior probability according to:

s # argmax
s)-1:10.

&
n)l

N &
i

ps,n,i
rn,i ! +1 $ ps,n,i,1'rn,i, (11)

where n corresponds to the neuron number, N is the total number of
neurons considered, ps,n,i is the probability that neuron n generates a
spike (1) in the ith time bin for stimulus s. Finally, rn,i is the response (0 or
1) generated by neuron n in the ith time bin. The procedures for regu-
larizing ps,n,i, selecting validation and training data, and bootstrapping
was identical to the single neuron case as described above. The number of
neurons was varied by randomly selecting between 1 and 50 neurons
during the bootstrapping procedure to quantify how the classifier per-
formance improves with the population size in each of the three cortical
fields.

For the multi-neuron rate classifier, the classified shape is obtained as
follows:

s # argmax
s)-1:10.

&
n)l

N &
i)l

4

ps,n+rn,i,, (12)

where rn,i is the response of the nth neuron (i.e., the spike count over the
500 ms observation window) during the ith 500 ms stimulus cycle and
ps,n(k) is the probability that neuron n generates k action potentials to
shape s. As for the single-neuron classifier, the average performance and
error bounds were obtained by selecting single trials for validation, the
remaining nine trials for model generation, and bootstrapping the pro-
cedure 500 times. As for the spike-timing population classifier, the num-
ber of neurons was varied by randomly sampling between 1 and 50
neurons to determine how classifier performance depends on the popu-
lation size.

Rendering and interpreting the confusion matrix
Single neuron and neural population response-based sound classifica-
tion was rendered as a sound classification matrix (aka, confusion ma-
trix) where the abscissa corresponds to the sounds that were delivered to
the classifier as input and the ordinate corresponds to the sound that was
classified (classifier output). Color in the matrix corresponds to the
probability that a particular input was classified as a specific output. The
cells of the matrix falling along the diagonal indicate the percentage
correct classification of the original sound fc and the cells that fall off the
diagonal indicate to the percentage classification as other sounds (aka,
miss-classification). Each cell indicates the percentage classification of
the 10 trials or sound presentations. For perfect classifying performance,
each cell on the diagonal of the matrix will equal 100% correct classifica-
tion. Any classification off the diagonal indicates less than perfect classi-
fication and all rows off the diagonal in a corresponding column of the
matrix sum up to 100% correct classification. Given that we have 10

Table 2. Pooling enhances temporal classification performance

fc 2 4 6 8 11 16 23 32 45 64 Mean (SEM)

Half-duration 80 40 28 20 14 10 7 5 3 2
Slope 0.32 0.66 0.91 1.33 1.90 2.62 3.70 5.14 7.52 10.07
A1 2.3 2.2 2.4 2.6 2.7 2.9 2.7 1.57 2.2 2.9 2.4 (0.13)
VAF 2.5 2.6 2.6 2.8 3.0 2.1 2.3 2.95 2.1 2.2 2.2 (0.11)
cSRAF 3.1 2.1 2.2 2.8 2.3 2.2 1.3 1.30 1.4 1.7 2.1 (0.20)

A ratio index is computed for classification performance obtained using the pooled temporal classifier versus the average single neuron classifier for each sound condition and each cortical field. For every sound condition and cortical field
there is a significant ( p ! 0.01, t test) improvement in performance with pooling.
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Figure 8. Average single neurons and population (N ) 50) temporal and rate code classifier in A1, VAF, and cSRAF. A–C, Single-neuron classification matrices based on temporal code classifier
performance (% classified) for 10 different sounds and three cortical fields A1, VAF, and cSRAF, respectively. The x-axis corresponds to the sounds delivered to the classifier as input and the y-axis
corresponds to sounds classified based on spike response (classifier output). D, Diagonal matrix values (for A–C) plotted with SE. In all scatter plots, blue, green, and red lines and symbols indicate
A1, VAF, and cSRAF, respectively. E–G, Single-neuron classification matrices indicating rate code classifier performance (% classified) for 10 different sounds following the same convention as above.
H, Diagonal matrix values (for E–G) plotted with SE for the three cortical fields. For fc of 2 Hz (half-duration 80 ms) spike-rate classification performance is significantly greater for VAF and cSRAF than
for A1. Hence, spike-rate classification performance is significantly changing with sound shape (H; F(9,1323) ) 14.12, p ) 0, two-way ANOVA) and with cortical field (F(2,1323) ) 3.67, p ) 0.026,
two-way ANOVA). I–K, Population classification matrix based on a temporal code classifier when responses are pooled across neuron populations for a given cortical field. L, Diagonal matrix values
(for I–K ) and SE for temporal (solid lines) and rate code (dotted lines) for A1, VAF, and cSRAF. M–O, Population classification matrix based on a rate code classifier in A1, VAF, and SRAF respectively.
P, Population classification performance based on temporal (solid line) and rate (dotted line) codes increases with the number of neurons in three cortical fields. Temporal code contributes
significantly more than rate code classifier in all three regions for both single-unit average and population average. *p ! 0.05, **p ! 0.01, ***p ! 0.001.
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sounds to compare, 10% classification is considered chance and 100%
classification is perfect performance accuracy.

Experimental design and statistical analysis
Data were collected from 223 single neurons from 16 male Brown Nor-
way rats. Number of single-neuron responses analyzed in A1, VAF, and
cSRAF were 54, 104, and 65, respectively. We have analyzed how re-
sponses change with cortical field and sound shape. Specifically, we an-
alyzed response histogram time course, sensitivities to pairwise sound
shapes, and classification of 10 different sound shapes. For the classifier
analysis, 50 neurons were selected at random from each cortical region,
then single unit and population classifier analysis were conducted. The
random selection of the neurons was bootstrapped 500 times to estimate
the distribution. Statistical analyses were conducted using MATLAB
(MathWorks).

Two-way ANOVAs were conducted to compare the effects of sound
shape in A1, VAF, and SRAF with: optimized discrimination index per-
formance (Fig. 5D), its associated time constant (Fig. 5H ), onset discrim-
ination index (Fig. 7D), sustained discrimination index (Fig. 7H ),
temporal classifier performance (Fig. 7D), and rate classifier perfor-
mance (Fig. 7H ) for average single neurons and temporal classifier per-
formance (Fig. 7L, solid lines), and rate classifier performance (Fig. 7L,
dotted lines) for population.

Student’s t test was performed to determine the period during which
the spike rate increased significantly from baseline spike rate and was also
used to compare the effects each cortical region with response delay (Fig.
2C), response duration (Fig. 2F ) and peak spike rate (Fig. 2I ). Poisson
distribution assumption with spike counts was tested using ' 2 test. Post
hoc Student’s t tests with Bonferroni correction were performed to com-
pare effects of sound shape in A1 and cSRAF with: discrimination index
(Fig. 5D, blue and red curves), its associated time constant (Fig. 5H, blue
and red curves), onset discrimination index (Fig. 7D, blue and red
curves), sustained discrimination index (Fig. 7H, blue and red curves),
temporal classifier performance (Fig. 7D, blue and red curves), and rate
classifier performance (Fig. 7H, blue and red curves) for average single
neurons and temporal classifier performance (Fig. 7L, blue and red solid
curves) and rate classifier performance (Fig. 7L, blue and red dotted
curves) for population.

Results
Prior studies indicate that the synchronized response duration or
sound encoding time increases with increasing sound burst du-
ration in A1 (Malone et al., 2015) and non-primary cortex (Lee et
al., 2016) providing a potential neural code for temporal shape in
the sound envelope. The “encoding time” corresponds to the
time window over which a neuron conveys information about an
ongoing sound and it can be quantified as a spike-timing variance
(Theunissen and Miller, 1995; Chen et al., 2012) or alternatively
as the duration of the response measured in the period histogram;
that is, the histogram that is synchronized to the sound (Malone
et al., 2015). Here we use the latter approach to examine how
spiking patterns change throughout the duration of a sound burst
by plotting the population response histogram and examine
whether similar principles hold for non-primary cortices (see
Materials and Methods; Fig. 1). As illustrated, the response his-
togram has a complex shape including a “peak” (asterisk) and
secondary sustained components that change with temporal
shape of the sound envelope (Fig. 1). As shown all of our sounds
peak at 250 ms in the sound burst cycle (Fig. 1) and as fc increases,
the sound burst slopes and durations increase and decrease, re-
spectively (Fig. 1, see overlaid sound pressure waveform; Table 1,
top rows). In all cortical fields, as fc increases the response peak
(asterisk) occurs at increasingly later time points in the sound
cycle approaching and eventually surpassing the time at which
the sound burst peaks (Fig. 1). Accordingly, peak response delay
is positively correlated (p ! 0.001) with our sound shape param-

eter (fc) in all three cortical fields (Fig. 2A). Because the sound
envelope slope increases and duration decreases with fc, this re-
sult is consistent with the envelope slope and level sensitivities
previously reported for A1 (Heil, 2001). A similar relationship
holds for the two non-primary cortices examined here (Fig. 2A,
green and red lines). Note that for all but one sound shape, re-
sponse delays are completely overlapping for the three cortical
fields: A1, VAF, and cSRAF (Fig. 2A, blue, green, red symbols, and
lines). Accordingly, the cumulative probability distributions for
the three cortices are highly overlapped (Fig. 2B). Together these
results extend prior studies indicating that the peak response
delays vary with temporal shape of the sound envelope in non-
primary cortex as they do in A1.

In A1, response durations can vary with the slope and dura-
tion of change in the sound envelope providing potential neural
codes for these temporal cues (Lu et al., 2001; Malone et al., 2015;
Lee et al., 2016). Here, we quantify response duration for the
segment of the population histogram that is significantly above
baseline response level (see Materials and Methods). In A1, re-
sponse duration decreases minimally with increasing sound
shaping parameter, fc (Fig. 2D, blue line). Because duration of the
sound burst decreases with increasing fc in our sounds (see Ma-
terials and Methods), this result is consistent with prior observa-
tions in A1 (Malone et al., 2015). Here, we find a logarithmic and
proportional change in response duration with sound shaping
parameter fc in all three cortical fields (Fig. 2D). Regression fits of
the data are significant (p ! 0.0001) with corresponding slopes in
VAF and cSRAF that are greater than that of A1 by fourfold and
17-fold, respectively (Fig. 2D, green and red lines, respectively).
Moreover, the cumulative probability distributions are shifted
with A1 showing significantly higher probabilities for shorter du-
ration responses than VAF and cSRAF (Fig. 2E). Across all sound
conditions the average response duration increases significantly
(p ! 0.001) and in rank order with: A1 ! VAF ! cSRAF (Fig.
2F). These results indicate that response duration varies in a
distinct manner from response peak delay. Moreover, response
duration could encode the slope and/or duration of the sound
burst envelope in all three cortical fields and the time scale for
such encoding increases logarithmically and in a hierarchical
fashion as one moves ventral from A1 to non-primary cortex.

In A1, the peak spike rate can increase as the rising slope of the
sound burst stimulus becomes sharper and its duration shorter
with sinusoid amplitude modulated sounds for example (Malone
et al., 2007, 2015). Likewise, here we find A1 and VAF have large
response peaks that occur early after sound onset (Fig. 1B,C). In
contrast, cSRAF has relatively small peaks associated with sound
onset (Fig. 1D). In all three cortices, the peak spike rate is posi-
tively correlated (p ! 0.0001) with sound shape fc (Fig. 2G) and
the slope of this relationship is larger in A1 and VAF than cSRAF
(Fig. 2G and legend). This is consistent with the notion that onset
responses in A1 and VAF are more sensitive to changes in sound
shape fc than those in cSRAF. Cumulative probability distribu-
tions indicate that A1 and VAF tend to have the highest peak
spike rates compared with cSRAF (Fig. 2H). Accordingly, across
all sound conditions, the average peak spike rates are larger (p !
0.001) in A1 and VAF than cSRAF (Fig. 2I). These results indicate
that peak spike rate could provide a signal for discriminating
differences in sound envelope temporal cues particularly in A1
and VAF.

The systematic changes in response timing described above
could provide a neural signal for decoding and discriminating
sounds that differ in the temporal shape of the sound envelope.
To examine this possibility, we simulate how the spike timing of
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single auditory cortical neurons might be integrated or decoded
at a subsequent stage of auditory pathway to optimally discrimi-
nate sound using a spike distance metric (see Materials and Meth-
ods). We first identify the integration time scale, that is, the
exponential time constant (Tau or ") of a hypothetical recipient
neuron needed for optimal sound shape (fc) discrimination. To
do so, we assign individual spikes a magnitude of “1” and keep
track of the spike times as shown with dot raster plots of spike
train responses to 10 presentations of the same sound envelope
(Fig. 3A,B). Each spike is convolved with an exponential func-
tion that has a defined time constant (Tau or "; Eq. 1; see Mate-
rials and Methods). The approach is illustrated for responses
from a single cSRAF neuron to a sound sequence with four
shaped noise bursts that are each 20 ms in half-duration (Fig. 3A,
top, with fc of 8 Hz). The spike times plotted immediately below
the sound pressure waveform continue throughout each sound
burst and there is a silent period between sound bursts (Fig. 3A,
bottom dot raster plot). The smoothed spike train responses for
10 individual sound presentation trials are illustrated in a color
plot (Fig. 3C, top). The corresponding smoothed spike train re-
sponse average of 10 sound trials illustrates the integrated re-
sponse time course when the time constant is 64 ms (Fig. 3C,
bottom plot, black line). When the half-duration of the sound
burst is 20 ms (fc of 8 Hz), a smoothing time constant of either 64
or 256 ms generates four large amplitude response peaks (Fig. 3C
and Fig. 3E, bottom plots, black lines). When the sound burst
half-duration is shorter (2 ms, fc of 64 Hz) and corresponding
slopes are faster, responses synchronize to sound onset and there
is a less pronounced silent period between sound bursts (Fig. 3B,
see dot raster). Here, it is easier to resolve discrete neural re-
sponses to the 4 sound bursts when the time constant is smaller
(Fig. 3D, bottom, Tau equal to 64 ms) versus when it is larger (Fig.
3F, bottom, Tau equal to 256 ms). Accordingly, our estimated
neural discrimination of 2 versus 20 ms half-duration sounds is
better (index 1.52 vs 1.27) with shorter time constants (64 ms vs
256 ms, respectively). This example cSRAF neuron response il-
lustrates visually how the time scale for integrating temporal re-
sponses can determine the optimal sound shape discrimination.

Because primary and non-primary cortices have different re-
sponse durations for many sound shapes (Fig. 2D; fc ! 8 Hz), we
question whether the different cortical fields have different opti-
mal time scales for discriminating sounds. To examine this, the
time constants are varied from 2 to 256 ms to determine the time
constant that elicits the optimal discrimination index (aka, max-
imal discrimination index). The approach for determining the
optimal discrimination index and time constant is illustrated for
example neurons from each cortical field (Fig. 4A–C). Here, the
different color symbols indicate 9 different sound shapes being
compared with a short duration reference sound (2 ms, fc ) 64
Hz, Fig. 4A–C). Neural discrimination functions for a single
comparison of the short duration reference sound versus a long
(80 ms, fc ) 2 Hz) duration sound are shown for each example
neuron (Fig. 4A–C, red symbols and curves). In all three neurons,
the time constant generating the maximum or optimal discrimi-
nation is &16 ms (Fig. 4A–C, asterisks and light gray bar).

Though temporally precise spiking patterns provide a signal
for discriminating the temporal shape of the sound envelope in
A1(Malone et al., 2015), it is not clear if this is true for all non-
primary cortices (Niwa et al., 2013). Here, we vary the sound
envelope temporal cues independent of underlying fine spectral
structure to examine neural discrimination for 45 pairs of sound
envelope shape (see Materials and Methods; Fig. 5A–C). As ex-
pected, when the sound shapes being compared are identical (i.e.,

the sound vs itself), sound discrimination is zero (Fig. 5A–C,
matrix diagonal, dark blue voxels). Though the differences are
small, A1 and VAF have significantly higher mean discrimination
than cSRAF averaged across all 45 pairwise discriminations (Fig.
5A–C). Conversely, cSRAF neurons are marginally better at dis-
criminating across 30 pairwise sound comparisons when sound
burst fc is !11 Hz (Fig. 5A–C; fc ! 11 Hz) and corresponding
sound burst half-duration is &14 ms. Discrimination perfor-
mance drops (p ! 0.05, fc (F(8,1323) ) 44.8, two-way ANOVA) for
sounds with half-durations shorter than 28 ms (shape fc ( 8 Hz)
when the reference sound half-duration is 2 ms (fc of 64 Hz)
suggesting a half-resolution limit on the order of 20 ms (Fig. 5D).
These findings confirm the general principle that the temporal
spiking pattern can be used to discriminate sound shape in pri-
mary as well as non-primary auditory cortices.

Next, the optimal time constant is computed for each varia-
tion and pairwise comparison of sound envelope shape to deter-
mine whether the time scale for optimal discrimination changes
with sound shape and cortical field. As illustrated for all possible
pairwise sound comparisons, the time constant for optimal dis-
crimination varies systematically with sound shape fc (Fig. 5E–
H). Indeed, for fc &6 Hz, optimal time constants decrease with
increasing sound fc following a power law relationship in all three
cortical fields (Fig. 5H; e.g., reference sound fc is 64 Hz). Accord-
ingly, optimal time constants change significantly with sound
shape in all three cortical fields (see Materials and Methods;
F(8,1323) ) 11.57, p ! 0.001, two-way ANOVA). A key difference
across cortical fields is the time scale for optimal discrimination
of sound shape. Across many pairwise conditions A1 requires
short duration time constants for optimal discrimination (Fig. 5
E, see light blue and cyan voxels corresponding to 20 –25 ms). In
contrast, VAF and cSRAF neurons require long duration ((40
ms) time constants for many pairwise sound discriminations
(Fig. 5F,G, orange, yellow voxels). This difference is readily ap-
parent in plots of optimal time constants versus sound fc with a
reference sound fc of 64 Hz (Fig. 5H, blue vs red or green sym-
bols). A1 has optimal time constants !25 ms on average for
sound shape fc between 6 and 16 Hz; whereas, cSRAF has optimal
time constants &35 ms for these same sounds (Fig. 5H, asterisks;
for A1 vs cSRAF: Student’s t test, p ! 0.001; Wilcoxon rank-sum,
p ! 0.01). The longer time scales needed for optimal discrimina-
tion in VAF and cSRAF suggest the longer response durations
(Fig. 2D) contribute to sound discrimination. For the range of
sound shapes where discrimination is near maximum, time con-
stants are rank ordered and increasing with: A1 ! VAF ! cSRAF
(i.e., for fc between 6 and 16 Hz, Wilcoxon rank-sum, p ! 0.01).
These results indicate that the time scale for integrating and
optimally discriminating changes with the sound shape and in-
creases hierarchically as one moves from primary to ventral non-
primary cortices.

Spikes that occur immediately after a sensory stimulus onset
(onset spikes) as well as those that occur subsequently are
thought to arise from distinct circuit mechanisms and to encode
unique sound properties (Chase and Young, 2008; Zheng and
Escabí, 2008). Here, we examine the potential contribution of
onset versus sustained spiking to sound discrimination. First, we
define a criterion level for sound-evoked versus spontaneous
spikes and determine the onset response time window (see Ma-
terials and Methods; Table 1). Next, we remove the onset spikes
and determine the optimal sound discrimination for residual
spikes, which we refer to as “sustained spikes” (see Materials and
Methods; Fig. 6). Discrimination matrices illustrate that all three
cortical fields discriminate sound shape well with onset spikes

6978 • J. Neurosci., August 1, 2018 • 38(31):6967– 6982 Osman et al. • Classifying Sound Shape in Auditory Cortex



alone for many pairwise sound comparisons (Fig. 7A–C, yellow,
orange, red voxels). Using onset spikes alone, sound discrimina-
tion performance decreases significantly with increasing sound fc
(F(8,1323) ) 141.32, p ! 0.001, two-way ANOVA) in all three
cortical fields (Fig. 7D). In all three cortical fields, discrimination
performance is generally lower when only the secondary spikes
are used to estimate sound shape discrimination (Fig. 7E–G vs
A–C). However, VAF and cSRAF outperform A1 when only these
secondary spikes are used (Fig. 7H, asterisks). These results sup-
port the idea that onset responses strongly contribute to neural
discrimination of sound shape in all cortical fields; whereas, sus-
tained responses provide more effective discrimination in non-
primary cortices, VAF and cSRAF.

In real acoustic scenes, animals must identify or classify many
sounds that can have substantially different temporal shapes in
the sound envelope. Here, we simulate how spike timing could be
used to classify 10 different temporal sound shapes with a prob-
abilistic naive Bayesian model. As a first step, we isolate and as-
sign each spike in a spike train a value of “1” and each time bin
where there is no spike a value of “0”. An average response histo-
gram associated with each sound is used to generate a time-
varying response probability distribution identifying that sound
(i.e., the prior; see Materials and Methods). Next, the likelihood
that measured spike train belongs to a particular sound shape is
computed for all shapes. This allows us to determine which sound
shape best accounts for a given spike train (aka, the observed
evidence). The percentage correct classification is then computed
for each individual spike train across all shape fc conditions with
appropriate cross-validation and rendered in a corresponding
confusion matrix (see Materials and Methods). As shown, precise
spike-timing of single neurons can be used to classify 10 different
sounds at above chance levels in all three cortical fields with ac-
curacies between "25 and 40% correct (Fig. 8A–C, red and or-
ange voxels along diagonal). All cortical fields classify poorly
(near chance levels) when the sound envelopes have steep slopes
and shorter durations (aka, fc ( 32 Hz; Fig. 8D). When all spikes
are considered, A1 (blue line) outperforms cSRAF (red line) for
classifying many sounds (Fig. 8D, blue vs red lines, asterisks) and
VAF performs at intermediate levels (Fig. 8D, green line). Tem-
poral classification performance is significantly changing with
sound shape (F(9,1323) ) 29.6, p ) 0, two-way ANOVA) and with
cortical field (F(2,1323) ) 59.68, p ) 0, two-way ANOVA). These
results indicate that individual neurons on average can classify
sound shape based on in the spike-timing temporal patterns.

Since peak spike rate changes with sound shape (Fig. 2G), it is
possible spike rate could be used to classify 10 sound shapes in
single neurons. To determine this, spike-rate data are fit with a
Poisson distribution for each sound shape condition and a Naive
Bayes classifier is used to classify the sound shape given observed
single-trial spike count responses within a 2 s period to generate a
rate metric (see Materials and Methods). All three cortical fields
classify sounds with a low performance accuracy based on spike
rate alone (Fig. 8E–G). Accordingly, on average A1 neurons have
near chance levels of performance (i.e., !15%) across all sound
shapes (Fig. 8H, blue line). In VAF and cSRAF, spike rate-based
classification accuracy is only significantly higher for the sound
burst with the longest half-duration (80 ms, fc of 2 Hz; Fig. 8H,
asterisk; p ! 0.05). These results suggest that spike count or
equivalent spike rate per 2 s is not an optimal neural signal
for coding sound shape in primary and non-primary auditory
cortices.

Above we determine how the average single-neuron responses
can be used to classify sounds. However, real brains have the

capacity to access and simultaneously pool responses across
many neurons in a given population (Schneider and Woolley,
2010; Malone et al., 2015). Here we examine the possible advan-
tage of pooling from up to 50 neurons within each cortical field
for classifying sound envelope shape (see Materials and Meth-
ods). In all three cortices, population pooling increases the per-
formance level compared with the single-neuron temporal
response classifier (Fig. 8I–K vs A–C). Accordingly, maximal per-
formance levels are between 80 and 100% accuracy with pooled
neuron output (Fig. 8L, solid lines) achieving &2-fold more ac-
curacy than obtained for the average single neuron in all three
cortical fields (Fig. 8D). In all three cortical fields, pooled perfor-
mance decreases as fc increases indicating poor classification of
sound bursts that have a rapid rate of change in amplitude and
short duration (Fig. 8L). A1 outperforms cSRAF across all sound
shapes when responses are drawn from the population (Fig. 8L,
asterisks; p ! 0.05, Student’s t test). In contrast, the pooled out-
put performance is close to chance levels when we use a spike-
rate-based sound classifier in all cortical fields (Fig. 8L, dotted
lines, M–O). Nevertheless, classification performance signifi-
cantly varies with the method of classification (spike timing vs
rate, A1: F(9,980) ) 144.2, p ) 0; VAF: F(9,980) ) 144.37, p ) 0;
SRAF: F(9,980) ) 301.03, p ) 0, two-way ANOVA) and across
cortical fields (A1: F(1,980) ) 9362.78, p ) 0; VAF: F(1,980) )
7758.69, p ) 0; SRAF: F(1,980) ) 4934.89, p ) 0, two-way
ANOVA). These results indicate that spike timing provides a ro-
bust signal for sound shape classification and performance im-
proves when output from more neurons can be pooled to classify
sounds.

Given that A1 and non-primary cortices have distinct time
scales for responding to sequences of sound bursts, we question
whether the advantage of pooling neural responses is similar for
all sounds and cortical fields examined. To examine this, we cre-
ate a ratio index between the classification performance obtained
with the average single neuron versus the pooled temporal clas-
sifier for each sound and for each cortical field (Table 2). Accord-
ing to this index, " 1- to 3-fold enhancement is evident for each
sound condition in all three cortical fields (Table 2; p ! 0.01, t
test). The effect of pooling on classification performance was
greater on average in A1 than in cSRAF (Table 2, far right col-
umn); however, the benefit of pooling was greater in cSRAF for
two of the longest duration sound bursts (Table 2; fc of 2 and 8
Hz). These results indicate that the advantages of pooling vary
with the time scale of the sound and the response as well as across
cortical fields.

Above we consider pooling output across 50 neurons in each
cortical field; however, the rate at which a population converges
toward a maximum performance provides a powerful bench-
mark for comparing performance across cortical fields (Car-
ruthers et al., 2015). Here, we find performance increases as the
number of neurons in the pool is increased in all three cortical
fields (Fig. 8P, solid lines). Half maximal performance is achieved
when pooling output from small (!10) populations of neurons
for spike-timing-based classification in all cortices. Importantly,
A1 and VAF require fewer neurons (3 and 5 respectfully) than
cSRAF (16 neurons) and cSRAF converges less rapidly to achieve
half maximal sound classification than A1 and VAF (Fig. 8P, blue
and green vs red solid line). In contrast, spike-rate-based classi-
fication was near chance levels (Fig. 8P, dotted lines) and did not
improve significantly with addition of more neurons (Fig. 8P,
inset). Together these results indicate that spike-timing patterns
provide a better signal than spike-rate patterns for classifying
sound shape in primary and non-primary cortices. Furthermore,
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A1 and VAF outperform cSRAF in 10 alternative forced choice
classification scenarios.

Discussion
This study finds cortical neuron population response delays and
durations change with the temporal shape of the sound envelope,
providing a potential neural code and extending prior studies in
midbrain and A1 (Phillips et al., 2002; Heil, 2003; Zheng and
Escabí, 2013) and non-primary auditory cortex (Lee et al., 2016).
Here, we find peak response delays change similarly with sound
shape fc across A1 and non-primary cortices (Fig. 2A) but this is
not the case for response duration (Fig. 2D). Though there is a
logarithmic and proportional change in response duration with
sound shape fc in all cortices, the slope of this relationship is
steeper in non-primary cortex (Fig. 2D, green and red lines). An
example cSRAF neuron demonstrates this with a marked de-
crease in the duration of synchronized spiking following a de-
crease in sound burst duration (Fig. 3A). In contrast, changing
sound shape fc has modest effects on response duration in A1
(Fig. 2D, blue line). Here we cannot disambiguate potential neu-
ral codes for sound burst slope versus duration as these cues
covary in our sounds (see Materials and Methods). However,
these results raise the intriguing possibility that there are unique
neural codes for the slope versus duration of a sound burst and
that non-primary cortices are more sensitive to the latter. A re-
lated and compelling new contribution from this study is the
finding that time scales for optimal and temporally precise sound
discrimination are longer in non-primary than primary cortex
(Fig. 5H, asterisks). This indicates that sustained spiking patterns
in non-primary cortex contribute to their ability to discriminate
the temporal shape of sound. These results support the concept
that auditory cortical fields collectively provide temporally syn-
chronized output on different time scales that could be used for
behavioral discrimination and classification of sound envelope
shape.

Though there is a long history supporting the concept that
temporal sensory features are represented in spike-timing pat-
terns, more recent studies indicate this occurs on multiple time
scales (Lundstrom and Fairhall, 2006; Butts et al., 2007; Panzeri et
al., 2010) and within spatially segregated cortical areas (Hamilton
et al., 2018). Even in within A1 responses are heterogeneous and
include onset, offset and sustained spiking that contributes to
robust sound duration discrimination (Malone et al., 2015). The
present study extends this concept providing evidence that
sounds can be temporally encoded on unique time scales in pri-
mary and non-primary sensory cortices. In all three cortical fields
examined, peak responses are synchronized to sound onset (Fig.
1) and can be used to discriminate sound shape (Fig. 7A–C). Prior
studies find a similar relationship between the rate of rise of the
sound envelope and onset response delay in auditory nerve, mid-
brain and A1 (Phillips et al., 2002; Heil, 2003). When we remove
the onset spiking response, discrimination performance is mark-
edly reduced for A1 neurons (Fig. 7H, blue line), as expected
given most of the A1 response occurs immediately following
sound onset. In contrast, following removal of onset spikes, non-
primary cortices outperform A1 for sound discrimination. This
indicates that longer duration responses of VAF and cSRAF con-
tribute additional signal for sound discrimination. Cortices may
in general specialize to classify sounds on different time scales, as
this is also observed in human cortices for responses to extended
sound sequences including speech (Hamilton et al., 2018). Here,
these results indicate that output from non-primary cortex must
be integrated on longer time scales to provide the optimal signal

for discriminating pairs of sounds that differ in temporal enve-
lope shape.

In more complex acoustic scenes animals are often faced with
more than two sounds to discriminate. Here, we use a Naive
Bayesian classifier to simulate how the output from cortex could
be used for perceptual identification of 10 sound shapes much
like individuals would have to do in a 10-alternative forced choice
task. This classifier successfully classifies sound shapes across 10
alternative forced choices provided we use the precise spike-
timing output from cortical neurons (Fig. 8A–D). If we remove
the precise spike-timing patterns and use spike rate instead, the
sound shape classifier performance drops dramatically. This re-
sult is true whether it is a single neuron contributing to the
classifier or multiple neurons. This suggests that temporal inte-
gration mechanisms are likely necessary to readout and classify
large sets of sound shapes in primary as well as non-primary
cortices.

This study finds pooling activity from more neurons improves
sound classification performance in A1 and non-primary cortices
(Table 2) even though there is a rank order increase in temporal
imprecision (jitter) of single-neuron responses to sound shape
with: A1 ! VAF ! cSRAF (Lee et al., 2016). This supports the
concept that pairwise discriminations are robust to differences in
response duration or jitter, as reported previously (Larson et al.,
2009). Here, we provide additional evidence that the ability to
classify 10 sound shapes with spike-timing pattern is inversely
related to the temporal imprecision of cortical responses with:
A1 & VAF & cSRAF. Thus, cSRAF typically has weak onset and
longer duration responses with correspondingly less accurate
sound classification performance with the temporal-code-based
classifier (Fig. 8P, solid lines). Conversely, cSRAF has a slightly
more robust performance with the rate-code-based classifier
(Fig. 8P, inset, dotted red line). The differences in accuracy for
classification in non-primary cortices are not likely due to differ-
ences in spike rate or reliability, which are similar across cortical
fields for sound burst sequences with repetition rates of 2 Hz (Lee
et al., 2016). In all three cortices, our classifier has a 2 to threefold
increase in performance when pooling output from the popula-
tion of neurons compared with the average single neuron (Table
2). The pooling advantage in general is consistent with the prop-
osition that pooling activity of groups of neurons can compensate
for spike train imprecision in individual neurons (Zohary et al.,
1994; Geffen et al., 2009; Bizley et al., 2010; Schneider and Wool-
ley, 2010; Carruthers et al., 2015). The new twist in the present
study is that pooling is also important for robust temporal-code-
based sound classification in non-primary cortices like cSRAF, a
region with temporally sluggish and imprecise responses that are
longer in response duration (Fig. 2D) and encoding times (Lee et
al., 2016).

A hierarchy in time scales between A1 and non-primary cor-
tices may reflect functional hierarchies for pooling, decoding and
classifying sounds. The degree of sound classification perfor-
mance improvement with neuron response pooling is robust in
A1 and cSRAF for short (Table 2; fc & 8 Hz) and longer (Table 2;
fc ! 8 Hz, half-durations (20 ms) duration sound bursts, respec-
tively. Thus, cortices may have distinct optimal time scales for
pooling and decoding cortical responses in much the same way
that they have distinct optimal time scales for pairwise sound
burst discriminations. Accordingly, brain structures that receive
and pool output from cSRAF could require longer temporal in-
tegration times than structures that pool output from A1. In such
a scenario, non-primary cortex could certainly pool responses
from A1 to classify sounds but the reverse is less likely.
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All hearing mammals have multiple auditory cortical fields
(Hackett, 2011), and in the rat it has been demonstrated that each
field is specialized to respond to distinct acoustic features (Hig-
gins et al., 2010; Storace et al., 2011, 2012; Carruthers et al., 2015;
Nieto-Diego and Malmierca, 2016). A1 resolves time better than
non-primary cortices, VAF, and cSRAF (Lee et al., 2016). Con-
versely, non-primary cortices (VAF and cSRAF) resolve spectral
frequency and spatial location cues in sound better than A1 (Pol-
ley et al., 2007; Higgins et al., 2010; Storace et al., 2011; Lee et al.,
2016). Each cortical field receives distinct thalamocortical path-
way inputs that could underlie these functional specializations
(Storace et al., 2011, 2012). It is possible these specializations
reflect time-frequency tradeoffs in sound processing where A1,
and its corresponding thalamocortical pathway, have superior
temporal resolution at the expense of spectral resolution. Con-
versely, non-primary fields, and corresponding thalamocortical
pathways, could be better at resolving frequency cues at the ex-
pense of resolving timing cues. In addition, such differences may
also reflect trade-offs in the ability to resolve spatial location of
sound (Higgins et al., 2010). In the present study, we hold spectral
and spatial cues constant to examine neural coding of temporal
cues in the sound envelope independently. Future exploration
will be needed to determine whether neuronal classification of
sound’s temporal shape is even more robust in non-primary au-
ditory cortices when spectral, temporal and spatial features are
combined (Carruthers et al., 2015; Engineer et al., 2015; Town et
al., 2017) and when animals are attending during a behavioral
tasks (von Trapp et al., 2016), as happens in natural settings.
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