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Neural Modulation Tuning Characteristics Scale to
Efficiently Encode Natural Sound Statistics
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The efficient-coding hypothesis asserts that neural and perceptual sensitivity evolved to faithfully represent biologically relevant sensory
signals. Here we characterized the spectrotemporal modulation statistics of several natural sound ensembles and examined how neurons
encode these statistics in the central nucleus of the inferior colliculus (CNIC) of cats. We report that modulation-tuning in the CNIC is
matched to equalize the modulation power of natural sounds. Specifically, natural sounds exhibited a tradeoff between spectral and
temporal modulations, which manifests as 1/f modulation power spectrum (MPS). Neural tuning was highly overlapped with the natural sound
MPS and neurons approximated proportional resolution filters where modulation bandwidths scaled with characteristic modulation frequen-
cies, a behavior previously described in human psychoacoustics. We demonstrate that this neural scaling opposes the 1/f scaling of natural
sounds and enhances the natural sound representation by equalizing their MPS. Modulation tuning in the CNIC may thus have evolved to represent
natural sound modulations in a manner consistent with efficiency principles and the resulting characteristics likely underlie perceptual resolution.

Introduction
According to ecological and efficiency principles, neural sys-
tems have evolved elaborate strategies to faithfully represent
sensory signals experienced by an organism in its natural hab-
itat (Attneave, 1954; Barlow, 1961). In the auditory system,
sound information is first decomposed in the cochlea by a bank of
frequency-selective hair cells. The structure and organization of
this filterbank mirrors a short-term spectral decomposition that
is near optimal for natural sounds (Lewicki, 2002; Smith and
Lewicki, 2006). Unlike the cochlear receptors, neurons in central
auditory structures are not only selective for the frequency con-
tent of a sound, but are also selective for spectrotemporal mod-
ulations that are found in wide variety of natural sounds
(Theunissen et al., 2000; Escabí et al., 2003; Woolley et al., 2005)
and are key information-bearing attributes (Chi et al., 1999;
Singh and Theunissen, 2003; Elliott and Theunissen, 2009).

Analysis of natural sound has demonstrated that several sta-
tistical characteristics are highly conserved across natural sound
ensemble (Voss and Clarke, 1975; Attias and Schreiner, 1998a;
Nelken et al., 1999; Escabí et al., 2003; Singh and Theunissen,
2003). In particular, temporal modulations in natural sounds
exhibit long-term temporal correlations that manifest as a 1/f
modulation power spectrum (MPS). Several studies have argued
that peripheral and central auditory neurons make use of such
statistical regularities and are adapted and possibly optimized to

efficiently encode natural sounds (Rieke et al., 1995; Attias and
Schreiner, 1998b; Nelken et al., 1999; Escabí et al., 2003; Woolley
et al., 2005; Lesica and Grothe, 2008; Holmstrom et al., 2010).
Yet, it is presently not clear whether and to what extent the struc-
ture and organization of the ensemble of neural modulation fil-
ters in central auditory stations confer advantages for encoding
natural sounds.

Neural sensitivity to sound modulations vary considerably
across the population of neurons in the central nucleus of the in-
ferior colliculus (CNIC) (Schreiner and Langner, 1988; Krishna
and Semple, 2000; Woolley et al., 2005; Rodríguez et al., 2010).
We consider the possibility that this extensive representation al-
lows for a more efficient encoding strategy for natural sounds. To
do so we compare two candidate “modulation filterbank” models
and compare these to the modulation filtering characteristics of
the CNIC (illustrated in Fig. 1). An equal resolution modulation
filterbank (Fig. 1A) would essentially preserve the power distri-
bution of the incoming sensory signal. In this scheme, modula-
tion filter bandwidths are constant regardless of the filter
modulation frequency so that the output of each filter is propor-
tional to the incoming signal power and the sensory signal is
directly represented by the firing rate distribution of the neural
array. Under such a scheme, neural responses to high modulation
frequency signals would be limited and difficult to detect because
high modulations frequency signals are under-represented in
natural sounds (i.e., 1/f modulation power spectrum). In the
present study we propose an alternate scheme that may account
for the wide range of response resolutions observed in CNIC
neurons and which may underlie perceptual resolution to ampli-
tude modulations. For neurons in this proportional resolution
filterbank, response resolution (modulation bandwidth) varies
systematically across the array so that it scales with the character-
istic modulation frequency of each neuron (Fig. 1B) thus follow-
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ing an approximate inverse relationship
to the 1/f MPS of natural sounds. Accord-
ing to this second model, neurons that re-
spond to high modulation frequencies
would integrate and respond to an exten-
sive range of modulation frequencies in
effect boosting the response power in the
high-frequency modulation channels, thus
equalizing or “whitening” natural sensory
signal (Field, 1987). From an efficiency per-
spective, such equalization would enhance
detection of weak high-frequency compo-
nents in natural sounds that are susceptible
to noise and evenly distribute encoding re-
sources across the neural ensemble allowing
for more efficient transfer of information.

Here we characterize the MPS of natu-
ral sound ensembles and compared these
statistics with the modulation filtering
characteristics of CNIC neurons. We
demonstrate that modulation-tuning scales in the CNIC and
neurons approximate proportional resolution filters that equal-
ize the MPS of natural sounds. The findings provide evidence
consistent with efficiency coding principles and which closely
mirror perceptual sensitivity.

Materials and Methods
Spectrotemporal modulation analysis of natural sounds
Natural sounds were obtained from commercially available compilations
and consisted of animal vocalizations (109 min), human speech (46.6
min), background environmental sounds (18.9 min), and white noise
(10 min). Vocalizations and background sounds were obtained from the
Macaulay Library of Natural Sounds at Cornell University (Storm,
1994a,b; Emmons et al., 1997). Human speech consisted of a radio
broadcast reproduction of the William Shakespeare play Hamlet (Shake-
speare, 1992). These same sound ensembles were previously analyzed
using a complementary approach (Escabí et al., 2003). All sounds were
sampled at a rate of 44.1 kHz and 16-bit resolution.

Natural sounds and white noise were decomposed into their spectral
and temporal components with a physiologically motivated filterbank
that resembles the filtering characteristics of the peripheral auditory fil-
ters in mammals and perceptual filtering characteristics of humans. The
filterbank model is similar to that described by Escabí et al. (2003). All
sounds were first filtered with an array of third-order (n ! 3) gamma-
tone filters (Irino and Patterson, 1996) with impulse response functions
of the form hk(t) ! t n"1 · cos (2!fkt) · e ("2*!*b (f k )*t) where fk represents
the frequency of the kth filter and b( fk) the filter bandwidth. The spec-
trotemporal envelope (s(t,xk)) of each sound was obtained by passing the
sound through the auditory filterbank and subsequently computing the
magnitude of the analytic signal for each frequency channel:

s#t, xk$ " sk#t$ " !hk#t$ ! s#t$ # i ! H %hk#t$ ! s#t$&!. (1)

Here s(t) is the input sound, sk(t) is the extracted envelope for the kth
channel, * represents the convolution operator, xk is the frequency vari-
able in octaves, and H{·} is the Hilbert transform. Filter center frequen-
cies ( fk) were logarithmically spaced (1/8 octave spacing) between 500
Hz and 16 kHz and filter bandwidths [b( fk)] were chosen to follow
perceptual critical bandwidths (Fletcher, 1940; Zwicker et al., 1957):
b( fk) ! 25 ' 75 · [1 ' 1.4 · fk

2]0.69. The temporal modulations within
each frequency channel were then band limited to 500 Hz by filtering the
temporal envelope with a b-spline lowpass filter. This upper limit was
chosen to allow comparisons with CNIC neurons which do not exhibit
substantial phase-locking to spectrotemporal modulations above this
range (Joris et al., 2004).

Once the sounds were decomposed into their spectrotemporal enve-
lopes, we computed the MPS of each ensemble (Singh and Theunissen,

2003). The MPS characterizes the signal modulation power as a function
of the sound’s temporal and spectral modulation. The MPS of each
sound was obtained by segmenting the spectrotemporal envelope of each
sound ensemble into nonoverlapping half-second blocks, sn(t, xk), and
averaging the MPS of each block:

Pss# fm, ($ "
1

N "
n!1

N

!ℑ%sn#t, xk$ ! w#t, xk$&!2, (2)

where N is the number of blocks, !{·} is a two-dimensional Fourier
transform, w(t,xk) is a two-dimensional Kaiser window ($ ! 3.4), fm is
the temporal modulation frequency (TMF, in Hz) and ( is the spectral
modulation frequency (SMF, in cycles/octave). Finally, we computed the
temporal and spectral MPS of each ensemble by considering a singular
value decomposition of the joint MPS (Singh and Theunissen, 2003).
The joint MPS of each ensemble was decomposed according to:

Pss# fm, ($ " "
l!1

L

% l ! Ul# fm$ ! Vl#($, (3)

where %1 ) %2 ) . . . ) %L are the singular values and Ul( fm) and Vl(()
are the singular vectors. The temporal and spectral MPS were then de-
fined by the first singular vectors, U1( fm)and V1(() respectively (Singh
and Theunissen, 2003).

Surgical procedure. Animals were housed and handled according to ap-
proved procedures by the University of Connecticut Animal Care and Use
Committee and in accordance with National Institutes of Health and the
American Veterinary Medical Association guidelines. The surgical and ex-
perimental procedures have been reported in detail previously (Zheng
and Escabí, 2008; Rodríguez et al., 2010) and are briefly outlined here.

Experiments were performed in an acute recording setting (48–72 h).
Cats were initially anesthetized with a mixture of ketamine (10 mg/kg) and
acepromazine (0.28 mg/kg, i.m.). A tracheotomy was performed to ensure
adequate ventilation and reduce the nasal cavity acoustic noise. Exposure of
the inferior colliculus was then performed either under sodium pentobarbi-
tal (30 mg/kg) or isoflurane gas mixture (3–4%). The inferior colliculus (IC)
was exposed by removing the overlying bone and tissue in the occipital
cortex and part of the bony tentorium. Following surgery, the animal was
maintained in a nonreflexive state by continuous infusion of ketamine (2
mg ! kg"1 ! h"1) and diazepam (3 mg ! kg"1 ! h"1), in a lactated Ringer’s
solution (4 mg ! kg"1 ! h"1). Biological data (heart rate, temperature,
breathing rate and reflexes) was monitored and used as physiological criteria.

Acoustic stimuli and delivery. Sounds were delivered dichotically to the
animal in a sound-shielded chamber (IAC) via hollow ear-bars (Kopf
Instruments), attached to a closed binaural speaker system. The system
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Figure 1. Hypothetical modulation filterbank models. A, An equal resolution filter (constant filter bandwidth) preserves the
power of the signal across all frequencies. B, The filter bandwidths of a proportional resolution filterbank scale with frequency. This
scaling can augment the power of the incoming signals for higher frequencies as a consequence of the larger bandwidths. The
filterbank models are shown for temporal modulations; however, an equivalent framework can also be applied for spectral
modulations.
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was calibrated (flat spectrum between 1 and 47 kHz, *3 dB) with a finite
impulse response inverse filter (implemented on a Tucker-Davis Tech-
nologies RX6 Multifunction Processor). Sounds were delivered with ei-
ther a Tucker-Davis Technologies RX6 or an RME DIGI 9652, through
electrostatic or dynamic speaker drivers (Tucker-Davis Technologies
EC1; or Beyer DT770).

To identify recording locations within the central nucleus, we first
presented a random sequence of pure tones (50 ms duration tone pips
with 300 intertone interval spanning 1– 47 kHz and 5– 85 dB SPL in 1/8
octave and 10 dB steps). This allowed us to measure the frequency re-
sponse area of each unit and to verify the tonotopic gradient of the CNIC
(Merzenich and Reid, 1974; Semple and Aitkin, 1979). Recording loca-
tions were selected only if a consistent tonotopic gradient was present.
The recorded neurons had a median best frequency of 7.8 kHz and
spanned a range from 1.1 kHz to 19.5 kHz. Next, a dynamic moving
ripple (DMR) sound was presented to measure the spectrotemporal pref-
erences of CNIC neurons (Escabi and Schreiner, 2002). DMR were gen-
erated digitally using a sampling rate of 96 kHz and 24-bit resolution.
Two 10 min segments of the DMR sequence were presented (20 min
total) at 80 dB SPL (65 dB spectrum level per 1/3 octave). The DMR
consists of a time-varying broadband sound that covered a frequency
range from 1 to 48 kHz and probed spectrotemporal preferences with a
maximum temporal and spectral modulation of 500 Hz and 4 cycles per
octave, respectively. For the purpose of this study only spectrotemporal
receptive fields (STRFs) for the contralateral ear are considered as these
characterizes the dominant phase-locked response of CNIC neurons
(Qiu et al., 2003).

Electrophysiology
Neural data were obtained from 353 recording locations in the central
nucleus of the inferior colliculus. Of the 353 recording locations, 262
passed stringent selection criteria to qualify as single unit activity as described
below. Acute 4-tetrode (16 channel) recording probes (NeuroNexus Tech-
nologies) with 150 &m electrode separation and 177 &m 2 contact area
(impedance 1.5–3.5 M( at 1 kHz) or single parylene-coated tungsten
electrodes were used for the neural recordings (impedance 2.5–3.5 M( at
1 kHz). The probes or single electrodes were first positioned on the
surface of the IC with the assistance of a stereotaxic frame (Kopf Instru-
ments) at an angle of +30° relative to the sagittal plane (orthogonal to the
isofrequency-band lamina) (Schreiner and Langner, 1997). Electrodes
were inserted into the IC with either an LSS 6000 Inchiworm (Burleigh
EXFO) or a hydraulic microdrive (Kopf Instruments). Neural responses
were digitized and recorded digitally for offline analysis with an RX5
Pentusa Base station (Tucker-Davis Technologies). Neural data obtained
with tungsten electrodes was spike-sorted offline with a Bayesian sorting
algorithm (Lewicki, 1994). For the tetrode data, neural signals were first
digitally bandpass filtered (300 –5000 Hz). The covariance of the signals
was computed and 4-sample vectors that exceeded a hyperellipsoidal
threshold of 5 were detected as candidate action potentials (Rebrik et al.,
1999). Spike waveforms were sorted using 4-vector peak values and first
principle components with an automated clustering software (KlustaKwik
software) (Harris et al., 2000). Sorted units were classified as single units only
if the signal-to-noise ratio exceeded 5.

Temporal and spectral resolution analysis. Spectrotemporal receptive
fields were obtained for the contralateral ear of identified CNIC single
neurons using a spike-triggered averaging procedure (Escabi and Schre-
iner, 2002). Significance testing was performed against a noise STRF
obtained for a Poisson neuron of identical spike rate (Escabi and Schre-
iner, 2002). A two-tailed test was performed and significant STRF regions
were defined by the positive and negative fluctuations that exceeded 3.09
SDs of the noise STRF. This criterion guarantees that we detect STRF
components at a significance level of p , 0.002 ( p , 0.001 for excitation
and p , 0.001 for inhibition) relative to those expected for a purely
random firing neuron. To assure that we only analyze clean, well defined
noise-free STRFs, we required that the signal-to-noise ratio of the STRF
exceed 5 (i.e., 14 dB). This criterion guarantees that we accurately
measure response parameters with minimal estimation error. Apply-
ing the selection criteria to the spike waveforms (SNR ) 14 dB, pre-
vious paragraph) and STRF (SNR ) 14 dB) resulted in a reduction of

the number of neurons in our sample (from 353 to 262). However,
similar results were obtained with less stringent selection criteria (us-
ing all recording sites; data not shown). As described in detail previ-
ously, the color spectrum in all plots indicates spike rate relative to the
mean such that blue and red denote decrease or increase below and
above the mean, respectively (Escabi and Schreiner, 2002).

The temporal and spectral resolution of each unit was quantified by
considering the temporal and spectral extend of each STRF (Ro-
dríguez et al., 2010). This analysis is motivated by the uncertainty
principle where the spectral and temporal resolution of a filter is
derived by considering the spectral and temporal power distributions
of a filter and measuring the average spread (i.e., the SD) across the
spectral and temporal dimensions (Gabor, 1946; Cohen, 1995). Briefly,
for each STRF we defined the receptive field time-frequency power dis-
tribution by the magnitude of the analytic signal STRF (Qiu et al., 2003;
Rodríguez et al., 2010):

p#t, x$ " !STRF#t,x$ # i ! H %STRF#t,x$&!2, (4)

where H{·} is the Hilbert transform. The spectral and temporal power
marginals were obtained by collapsing p(t,x) along the temporal and
spectral dimensions and normalizing for unit area, respectively:

px# x$ " # p#t, x$dt$## p#t, x$dtdx, (5a)

pt#t$ " # p#t, x$dx$## p#t, x$dtdx. (5b)

The center of mass values from the response power marginals define the
average STRF latency (t!) and best frequency (x!). The STRF integration
time (-t) and octave bandwidth (-x) were defined as twice the SD of the
spectral and temporal distributions:

-t " 2 ! %# #t ' t!$2 ! pt#t$dt, (6a)

-x " 2 ! %# # x ' x! $2 ! px# x$dx. (6b)

Modulation tuning and bandwidth analysis. The spectral and temporal
modulation resolutions of each unit were obtained directly from the
ripple transfer function (RTF). Specifically, we sought to characterize the
relationship between each unit’s characteristic temporal modulation fre-
quency and modulation tuning bandwidth to identify whether CNIC
neurons approximate proportional resolution modulation filters (as in
Fig. 1 B). The RTF of each neuron was obtained by performing a two-
dimensional Fourier transform (!2{·}) of the STRF and subsequently
computing the magnitude as described previously (Escabi and Schreiner,
2002):

RTF# fm, ($ " !ℑ2%STRF#t,x$&!. (7)

Here fm is the temporal modulation frequency variable and ( is the
spectral modulation frequency. The spectral and temporal MTF (sMTF
and tMTF) were then obtained by computing the power marginals of the
RTF and subsequently normalizing for a unit area:

Pt# fm$ "#!RTF# fm, ($!2d($##!RTF# fm, ($!2d( dfm, (8a)

Ps#($ "#!RTF# fm, ($!2dfm$##!RTF# fm, ($!2d( dfm. (8b)

The modulation tuning characteristics were obtained for each unit by
considering the region and extent of maximal neural activity directly
from the power marginals. The characteristic temporal and spectral
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modulation frequencies of each unit were derived by computing the
centroids from the modulation power marginals:

(c " #( ! Ps#($ d(, (9a)

fm,c " # fm ! Pt# fm$ dfm. (9b)

Next, we estimated the spectral and temporal RTF bandwidths as the
average width of the power marginals. The modulation bandwidths were
defined as two SDs relative to the centroid values:

BWs " 2 ! %##( ' (c$2 ! Ps#($ d(, (10a)

BWt " 2 ! %## fm ' fm,c$2 ! Pt# fm$ dfm. (10b)

Finally, for each unit we also computed the spectral (Qs ! (c /BWs) and
temporal (Qt ! fm,c /BWt) quality factors as a way of quantifying the
sharpness of modulation tuning.

Modulation power gain. To relate the bandwidth of each neuron to its
sensitivity (gain), we estimated the gain of the tMTF (Gtemporal) and
sMTF (Gspectral) that was strictly associated with the bandwidth of the
modulation filter. The modulation power gain was defined by the output
power in response to a white noise signal of unit variance. Temporal and
spectral MTFs were normalized for a peak gain of 1 (i.e., 0 dB) and the
modulation gain associated with the bandwidth of the filter was esti-
mated by integrating the amplitude normalized tMTF and sMTF.

Gtemporal "#Pt# fm$ dfm, (11a)

Gspectral "#Ps#($ d(. (11b)

Predicting the MPS output of the CNIC. For each of the three natural
sound ensembles (speech, vocalizations, environmental background
sounds), we predicted the MPS output that would result after passing the
natural sounds through a CNIC model filterbank. To do this, we devised
a modulation filterbank that was composed of rectangular filters with
unity gain across the filter passband. The filters were designed so that the
modulation frequency versus modulation bandwidth relationship ob-
served for CNIC neurons was preserved. Temporal and spectral modu-
lation filter bandwidths were chosen to follow the best-fit power-law
relationship to the CNIC data shown below in Figure 6:

BWt " 5 ! fm,c
0.8, (12a)

BWs " 1.2 ! (c
0.75. (12b)

This assures that the model filters scale according to the observed bandwidth
relationship for CNIC neurons. The simulation was performed using tem-
poral modulation filters between 5 and 350 Hz and spectral modulation
filters within 0.25–2.65 cycle/octave. We choose filters limited to this range so
that the filter upper cutoff frequencies do not exceed the maximum MPS
frequencies in the sound analysis (500 Hz temporal; 4 cycles/octave). The
output MPS for the CNIC model was obtained by passing the spectral and
temporal MPS of each sound ensemble through the CNIC model filterbank.

For reference, we also filtered the natural sound MPS with an equal reso-
lution filterbank where modulation filter bandwidths are constant. To allow
for direct comparisons between the CNIC filters and equal resolution filters,
the bandwidth of the equal resolution filters was matched to the smallest
bandwidth for the CNIC filterbank. This normalization allows for a com-
mon reference point since it guarantees that the first filter in both filterbanks
have identical gain and produces identical output.

Ensemble efficiency. As a metric of performance, we compared the
efficiency of both filterbanks for encoding spectral and temporal sound
modulations. Hypothetically, an efficient strategy for encoding natural
sound modulations across a neural ensemble is to represent all the mod-
ulations in that sound with equal power so that the corresponding power
spectrum is flat or “white”. Under such a scenario, each neural filter
produces identical response power regardless of its characteristic modu-
lation frequency so that encoding resources are evenly distributed across
the neural ensemble. Thus, an ensemble has 100% efficiency if all the
neurons in the ensemble produce identical output power. The spectral
and temporal ensemble efficiency are defined as the average normalized
modulation power:

Spectral Ensemble Efficiency "
1

M"
k!1

M

MPSs#(k$ ( 100%,

(13a)

Spectral Ensemble Efficiency "
1

L"
k!1

L

MPSt# fm,k$ ( 100%,

(13b)

where MPSs and MPSt are the spectral and temporal modulation power
spectrums of the sound after being filtered by the neural ensemble of
interest (CNIC filterbank or equal bandwidth filterbank). For the pur-
posed of calculating efficiency, MPSs and MPSt are normalized for a
maximum power of 1 (MPSs ! MPSs/max[MPSs] and MPSt ! MPSt/
max[MPSt]). Thus the ensemble efficiency corresponds to the average
power per neural receptor after being normalized to the receptor that
produces maximum power. Note that the ensemble efficiency is precisely
100% if the resulting MPS is “white” (i.e., flat modulation spectrum so
that MPSs and MPSt ! 1 for all frequencies).

Results
We present results for the natural sound modulation statistics
first (Fig. 2) and subsequently describe the filtering characteris-
tics of single CNIC neurons (Figs. 3– 6) and their unique benefits
for encoding natural sounds (Figs. 7, 8).

Natural sounds exhibit spectrotemporal modulation tradeoff
and power-law scaling
We examined how a biologically plausible peripheral filter bank
model decomposes a variety of natural sound ensembles. The
model consists of an array of filters with frequency-tuning band-
widths that scale with the filter center frequency as observed in
the auditory nerve of mammals (Kiang et al., 1965; Lewicki, 2002;
Mc Laughlin et al., 2007) and which exhibit low-frequency tails
(Kiang et al., 1965; Kiang and Moxon, 1974). Natural sound en-
sembles consisted of a large repertoire of animal vocalizations
(109 min), human speech (46.6 min), and background environ-
mental sounds (18.9 min). Figure 2A shows the sound wave-
forms (black waveform) and the spectrotemporal decomposition
obtained from a peripheral auditory model (color panels) for
representative two-second segments from, animal vocalizations,
background sound and white noise (ordered from top to bot-
tom). As can be seen, the peripheral model decomposition of
speech and other animal vocalizations reveals coherent spectral
and temporal modulations compared with the more homoge-
neous modulations of background sounds and white noise. The
modulation statistics of each ensemble are represented by the
average MPS (Fig. 2B). The MPS shows the sound’s modulation
power as a function of the temporal and spectral modulation
frequencies. Fast temporal modulations ()100 Hz) tended to
occur whenever vocalizations had coarse spectral modulations
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(,1 cycles/octave) as evident in the joint MPS. Conversely, fine
spectral modulation ()1 cycle/octave) were prominent primarily
when sounds had slow temporal modulations (,100 Hz). Vocal-
izations rarely contained fast temporal modulations when spec-
tral modulations were )1 cycle/octave (Fig. 2B). This tradeoff
between spectral and temporal modulations was evident from the
prominent portion of the MPS for the three natural sound en-
sembles examined (Fig. 2B, black contours circumscribe 90% of
the modulation power). In contrast the joint MPS of white noise
is much more uniform for temporal and spectral modulations up
to +400 Hz and +1.5 cycles/octave, respectively. Thus natural
sound ensembles exhibited a distinct modulation tradeoff that
was not present for white noise.

The spectrotemporal tradeoff in the sound decomposition by
the peripheral auditory filterbank serves to enhance temporal
modulations in speech. As can be seen from the speech MPS, a
prominent lobe with increase power is seen in the vicinity of
100 –300 Hz for coarse spectral modulations ,1 cycle/octave
(Fig. 2B, top). The increased power in this region is due to the fact
that speech contains prominent harmonics associated with voic-
ing pitch that are created by oscillations of the vocal chords.
When these harmonics are passed through peripheral filterbank
with physiologically plausible bandwidths they are transformed
into temporal modulations whenever the harmonics are unre-
solved (i.e., multiple harmonics fall within a single filter)
(Schouten, 1940). Thus voicing pitch is evident within the 100 –
300 Hz region of the MPS well within periodicity pitch range of

hearing. This enhanced temporal representation for speech is not
observed in spectrogram models that employ high-resolution
constant bandwidth filters capable of resolving the harmonics of
the sound (Singh and Theunissen, 2003; Elliott and Theunissen,
2009). These spectrogram models tend to enhance spectral mod-
ulations while severely limiting temporal modulations (to mostly
,50 Hz), so that voicing pitch can only be detected in the spectral
modulations (Elliott and Theunissen, 2009). By comparison, au-
ditory filters tend to enhance temporal modulations at the
expense of limiting spectral modulations. The ability of the pro-
posed peripheral model to enhance temporal modulations (over
constant bandwidth filterbanks used previously) is illustrated for
three harmonic complex sounds (100 Hz, 200 Hz and 300 Hz;
supplemental Fig. S1, available at www.jneurosci.org as supple-
mental material).

A precipitous decrease in the modulation power is observed
with modulation frequency when the MPS is decomposed into its
strictly spectral or temporal components (Fig. 2C,D). This de-
crease approximates a power-law (straight line on double loga-
rithmic plot) as previously described for temporal modulation
(Attias and Schreiner, 1998a; Singh and Theunissen, 2003). The
temporal MPS of all three natural sound ensembles (Fig. 2C)
exhibited approximately power-law behavior for frequencies ex-
tending to several hundred hertz. In the case of speech, the trend
deviated somewhat from a strictly linear decrease as a result of the
strong modulation power within the voicing pitch region (100 –
300 Hz). Nonetheless, the modulation power of all three natural
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Figure 2. Ensemble characteristics of natural sounds. Natural sounds waveforms (A, black waveforms) were decomposed by an auditory filterbank model into a spectrotemporal representation
(A, color panels) that depicts the sound power as a function of time and frequency. Representative 2 s segments from speech (male speaker; “If she unmask her beauty to the moon.”), an animal
vocalization (wild cat; Felis herpailurus yaguarondi), background sound (rain), and white noise (top to bottom). For vocalizations the sound power is coherently modulated over frequency and time,
whereas for background sounds and white noise the modulations are random. For white noise the power at high frequencies is accentuated because the auditory filterbank bandwidths are larger
for higher frequencies. B, The MPS depicts the signal power as a function of temporal and spectral modulation frequency. Black contours in the MPS denote the modulation space that accounts for
90% and 50% of the MPS power. For all three natural sounds, a tradeoff between temporal and spectral modulations is observed. C, D, The temporal and spectral modulation power spectrum was
obtained by decomposing the MPS into its strictly spectral and temporal components (see Materials and Methods). A strong decrease in the modulation power of all natural sounds
approximates a power law function (straight line on a doubly logarithmic plot). A comparable decrease in the modulation power is not observed for white noise. Red curves in C and D
designate the optimal-fit power law.

Rodríguez et al. • Neural Scaling to Efficiently Encode Natural Sounds J. Neurosci., November 24, 2010 • 30(47):15969 –15980 • 15973



sound ensembles decreased substantially with increasing tempo-
ral modulation frequency (Fig. 2C, fitted optimal power law are
shown in red; slopes for speech ! "15.6 dB/decade; vocaliza-
tions ! "10.0 dB/decade; background ! "7.0 dB/decade). A
similar trend is also observed for the spectral MPS of all three
natural sound ensembles for spectral modulation frequencies up
to +1.5 cycles/octave (Fig. 2D). Similar to the temporal MPS,

spectral modulation power decreased at a rate of +15 dB/decade
within this range (Fig. 2D, fitted optimal power law are shown in
red; slopes for speech ! "15.9 dB/decade; vocalizations ! "12.2
dB/decade; background ! "13.7 dB/decade). The reduced
power for spectral modulations )1.5 cycles/octave in all natural
sound ensembles (and white noise) is attributed to the critical-
band bandwidths (+1/3 octave) of the peripheral filterbank
model (Fletcher, 1940; Zwicker et al., 1957), which substantially
limits spectral modulations beyond this point. In contrast to nat-
ural sounds, the modulation power of white noise tended to be
relatively constant throughout comparable range of temporal
(Fig. 2C, bottom) and spectral modulations (up to +1.5 cycles/
octave) (Fig. 2D, bottom). Thus, the approximate power-law
scaling observed for natural sounds was not present for white
noise.

Modulation filtering tuning and scaling
Ideally if auditory neurons use an efficient strategy to encode
natural sounds they would show complementary modulation
tuning statistics to those described above. Here we measured
STRFs and MTFs from an ensemble of single neurons in the
CNIC (N ! 262) to compare the tuning of neurons with the MPS
of natural sounds. STRFs were obtained as illustrated for four
example neurons (Fig. 3A–D, left) along with the corresponding
MTF (Fig. 3A–D, right). The STRF indicate the preferred sound
modulation pattern that evokes a time-locked response to the
sound. In a complementary manner, the MTF of each neuron
depicts the preferred response as a function of the temporal
(TMF) and spectral (SMF) modulation frequency of the sound
(red correspond to strong activity while blue indicates low activ-
ity). CNIC neurons were tuned to a restricted range of sound
modulations (Fig. 3A–D, right) and these tuning properties were
directly related to the STRF structure (Fig. 3A–D, left). The first
two example neurons preferred relatively long duration sounds
as they exhibit a brief (+5 ms) excitatory peak followed by a
slower suppression (+10 and +5 ms, respectively; blue) along
the time axis of the STRF. These STRFs had narrow spectral
bandwidths (0.2 and 0.25 octave, respectively) and relatively long
STRF integration times (6.6 and 3.9 ms). Because of the relatively
long response times these neuron have a slow characteristic tem-
poral modulation frequency (cTMF ! 40.1 Hz and 58.9 Hz, re-
spectively). Spectrally, the STRF of both neurons exhibited an
interleaved pattern of excitation and inhibition extending along
the spectral axis over a range of +1 octave. Thus these neurons
respond preferentially to fine spectral modulations (cSMF ! 1.1
and 1.1 cycles/octave, respectively) as can be seen from their MTF
(Fig. 3A,B, right). The second two example neurons (Fig. 3C,D)
exhibited on-off-on temporal STRF pattern with substantially
shorter integration times (2.1 and 2.1 ms). Accordingly, the
MTFs for these neurons are tuned for faster temporal modula-
tions (cTMF ! 191.8 and 254.5 Hz; cross in Fig. 3C,D, right).
Spectrally, the neuron of C is narrowly tuned (0.18 octave band-
width) with well defined lateral inhibition and thus it is optimally
tuned to spectral modulation +1.2 cycles/octave (cSMF). By
comparison, the neuron of D has no lateral inhibition and is more
broadly tuned (0.4 octave). This neuron thus prefers sounds that
lack spectral modulations (on spectral patterns, 0 cycles/octave)
and it is tuned to low spectral modulations (cSMF ! 0.2 cycles/
octave). For these exemplar cells, the width of the STRF in spec-
tral and temporal dimensions is inversely related to the temporal
(BWt) and spectral modulation bandwidths (BWs), respectively.
This general behavior was observed across the neural ensemble
(supplemental Fig. S2, available at www.jneurosci.org as supple-
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Figure 3. Tradeoff in neural spectrotemporal tuning in the inferior colliculus. A–D, Example
STRF and the corresponding MTFs from four CNIC neurons. The example STRFs (A–D, left) are
ordered from slow to fast integration times (A, 6.6 ms; B, 3.92 ms; C, 2.12 ms; D, 2.13 ms). The
STRF bandwidths for these examples represent the average width of the STRF (A, 0.20 octave; B,
0.25 octave; C, 0.18 octave; D, 0.43 octave). As can be seen, neurons can be sharply or broadly
tuned in frequency or can alternately exhibit short or long integration times. The STRF structure
is directly related to the modulation tuning characteristics of each neuron (A–D, MTF shown on
right). STRFs with slow integration times (A) prefer slower temporal modulation while faster
STRFs prefer higher temporal modulations (D). Similarly, narrowband STRFs with strong side-
band inhibition tend to prefer higher spectral modulations (A) while broadband STRFs prefer
slower spectral modulations (D). Temporal and spectral modulation bandwidths account for the
sharpness of modulation tuning and are depicted by the horizontal and vertical black bars. The
intersection of these bars represents the characteristic temporal and spectral modulation of
each neuron. E, The ensemble average MTF for the CNIC shows the gain of the ensemble as a
function cTMF and cSMF (color plot). Dots represent the cTMF and cSMF of each neuron and
black contours represent the region of the MTF space that accounts for 90% of the response
power. Note that at the extremes, neurons can respond to fast temporal modulations (high
cTMF) or fine spectral modulations (high cSMF), but not both.
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mental material). Neurons with short STRF integration times
(Fig. 3D) tended to have broader BWt while neurons with sharply
tuned STRFs tended to have larger BWs (Fig. 3A). These general
relationships between the STRF and modulation domains are
expected a priori because the Fourier transform and uncertainty
principle dictate that the integration time of a system (average
temporal width) is inversely related to the systems bandwidth in
the Fourier domain (Gabor, 1946; Cohen, 1995). Empirically, we
observe that this is the case (supplemental Fig. S2, available at
www.jneurosci.org as supplemental material) and, throughout,
we therefore focus on the MTF parameters.

The distribution of modulation tuning parameters for CNIC
neurons was complementary to the MPS pattern of natural
sounds. Specifically, neural selectivity exhibited an inverse-like
dependence between the cTMF and cSMF of each neuron across
the neural ensemble. Figure 3E shows the ensemble averaged
MTF (shown in color) along with the cTMF and cSMF for indi-
vidual single neurons (superimposed dots). At the extremes, neu-
rons tended to prefer either fast temporal modulations or fine
spectral modulations, but generally not both. This behavior is
seen in the ensemble averaged MTF and the corresponding con-
tour accounting for 90% of the MTF power (Fig. 3E, black con-
tour). This contour does not encompass the region of high cTMF
and high cSMF values and is well approximated by a straight line
of negative slope (slope ! "4 cycles/octave per 250 Hz, p , 0.01).
At the extremes, the 90% contour extends to 450 Hz when spec-
tral resolution is poor (cSMF ! 0 cycles/octave). By comparison,
the contour is temporally restricted to 200 Hz for higher spectral
modulations (4 cycles/octave). This tendency to tradeoff spectral
for temporal modulations at the extremes is also evident from the
cTMF and cSMF of each neuron (Fig. 3E, black dots), which
exhibited a significant negative correlation (log10(cTMF) versus
log10(cSMF), r ! "0.44 * 0.05, p , 0.01). Furthermore, cTMFs
were strongly correlated with 1/cSMF (r ! 0.55 * 0.07, p ,
0.01) implying an inverse dependence between spectral and
temporal modulation sensitivity. Statistics for this behavior
are shown in Figure 4. Neurons were grouped according to
their cTMF (0 –50, 50 –100, 100 –150, 150 –200, 200 –250 Hz)
and the median (Fig. 4 A) and mean (Fig. 4 B) cSMF were
computed for each of the cTMF ranges. As can be seen, the
median and mean cSMF exhibited a significant decrease with
increasing cTMF (Wilcoxon rank-sum test with Bonferroni
correction p , 0.05; paired t test with Bonferroni correction
p , 0.05). Thus analogous to the MPS of natural sounds,
neural modulation tuning was confined to a select region of
the modulation space and mirrored the inverse dependence
observed in the MPS of natural sounds.

Although the CNIC response parameters were highly over-
lapped with the MPS of natural sounds, changes in MTF band-
widths opposed the natural tendency for sound modulation
power to decrease with increasing frequency (Fig. 2C,D). Figure 5
shows that modulation bandwidths and characteristic modula-
tion frequencies of CNIC neurons are strongly correlated with
one another. This result is not expected a priori and is consistent
with the proposed scaling modulation filterbank model (Fig. 1B).
Note that the characteristic modulation and modulation band-
width can in fact be completely independent of one another. For
instance, in the absolute resolution modulation filterbank pro-
posed in Figure 1A, the filter integration times (or bandwidth for
the spectral dimension) are constant regardless of the filter cTMF
(or cSMF, for spectral dimension), which is inconsistent with the
observed measurements (supplemental Fig. S2, available at www.
jneurosci.org as supplemental material A and B). As can be seen

temporal modulation bandwidth was strongly correlated with
the characteristic temporal modulation frequency (cTMF vs
BWt, Fig. 5A; r ! 0.79 * 0.02, p , 0.01) with slope near unity
(log(cTMF) vs log(BWt); slope ! 0.8, p , 0.01; best fit power-
law: tBW ! 2.5 · cTMF 0.8). Similarly, spectral modulation band-
widths were strongly correlated with cSMF (Fig. 5B; cSMF vs
BWs, r ! 0.78 * 0.03; slope ! 0.75, p , 0.01; best fit power-law:
sBW ! 1.2 · cSMF 0.75). Thus, neurons that responded optimally
to slow temporal (low cTMF) and coarse spectral (low cSMF)
modulations tended to have narrow spectral or temporal modu-
lation bandwidths, respectively. Stated in another way, modula-
tion bandwidths scaled with the neuron’s characteristic
modulation frequency.

Interactions between temporal and spectral response sensitiv-
ities were examined as previous studies have suggested systematic
relationships (Qiu et al., 2003; Rodríguez et al., 2010). Although
cTMF and cSMF were good predictors of the temporal and spec-
tral modulation bandwidths, respectively, the converse was not
true. Temporal modulation BW was only weakly related to the
spectral characteristics (i.e., cSMF) while spectral modulation
BW was weakly dependent on temporal characteristics (i.e.,
cTMF). In Figure 5C, the temporal modulation BW is shown as a
function of cTMF and cSMF (surface color plot designates BWt;
dots represent the cTMF and cSMF of each neuron). A weak

A

B

Figure 4. Modulation tradeoff statistics. A, B, Median (A) and mean (B) cSMF as a function of
cTMF range. The neural ensemble was partitioned into nonoverlapping cTMF ranges (0 –50,
50 –100, 100 –150, 150 –200, 200 –250 Hz). Both the median and mean cSMF decreased sys-
tematically with increasing cTMF range. Error bars designate the bootstrapped SE and * desig-
nates significant results (median, Wilcoxon rank-sum, p , 0.05 with Bonferroni correction;
mean, paired t test, p , 0.05 with Bonferroni correction).
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inverse correlation (r ! "0.24 * 0.06,
p , 0.01) was observed between the tem-
poral modulation bandwidth and charac-
teristic spectral modulation (cSMF).
Likewise, there was a small but significant
correlation (r ! "0.40 * 0.05, p , 0.01)
between spectral modulation bandwidth
and characteristic temporal modulation
(BWs vs cTMF, Fig. 5C). Thus response
dependencies across spectral and tempo-
ral components were evident although
not as strong as those within (Fig. 5A,B).

Modulation power equalization,
whitening, and efficiency
The observed neural scaling could theo-
retically enhance the representation of
natural sound modulations by equalizing
the power output of the neural ensemble.
Given that natural sound power decreases
as an approximate power-law with mod-
ulation frequency, it is required that gain
of the neural ensemble would increase in a
power-law fashion with modulation fre-
quency to compensate for the reduction
in sound modulation power. Mechanisti-
cally, this boost in the modulation power
could be achieved through scaling because
the high modulation frequency neurons
would integrate over a larger region of the
modulation space (compared with low modulation frequency
neurons) leading to a boost in the modulation power output for
high modulation frequency neurons.

To test for this possibility, we computed the modulation
power gain of each neuron that was strictly associated with the
filter modulation bandwidth (see Materials and Methods). As can
be seen (Fig. 6A), temporal modulation gain was strongly corre-
lated with the cTMF (r ! 0.85 * 0.01, p , 0.01). Similarly, the
spectral modulation gain was also strongly correlated with the
cSMF (Fig. 6B, r ! 0.91 * 0.01, p , 0.01). The modulation power
gain in either spectral or temporal dimension increased approx-
imately in proportion to the corresponding characteristic modu-
lation frequency of the neuron (temporal slope ! 7.65 dB/decade;
spectral slope ! 8.2 dB/decade). Ideally, if the characteristic modu-
lation frequency is equal to the modulation bandwidth (as would
be the case for equivalent rectangular bandwidth bandpass filters
with quality factor 1), the slope of the resulting curve would be
precisely 10 dB/decade. In the CNIC, modulation filter band-
widths were slightly smaller than the characteristic modulation
frequency (median quality factor: Qt ! 0.7 for temporal; Qs !
0.89 for spectral; supplemental Fig. S3, available at www.
jneurosci.org as supplemental material) and thus the corre-
sponding slopes were slightly ,10 dB/decade. Furthermore,
there was a subtle but significant correlation between cTMF and
Qt (r ! 0.44 * 0.07, p , 0.01) and cSMF and Qs (r ! 0.41 * 0.07,
p , 0.01) indicating that neurons with higher characteristic mod-
ulation frequency where more sharply tuned (Fig. S3A,B avail-
able at www.jneurosci.org as supplemental material). The
correlation between modulation bandwidth and modulation
gain were high for both temporal (Fig. 6C, r ! 0.95 * 0.01, p ,
0.01) and spectral (Fig. 6D, r ! 0.94 * 0.02, p , 0.01) dimen-
sions, suggesting that the modulation gain was strongly depen-
dent on the modulation bandwidth. Overall, these trends oppose

the MPS for natural sounds, where power decreases with increas-
ing modulation frequency (Fig. 2B), thus providing a viable
mechanism to equalize the modulation power output of the
CNIC for natural sounds.

To determine the degree of power equalization that could be
conferred by the CNIC filtering characteristics, we filtered the
MPS of natural sounds with a modulation filterbank model
composed of rectangular filters in which bandwidths scale
with characteristic modulation frequencies as for the CNIC neu-
ral population (see Materials and Methods). For comparison, the
natural sounds were also filtered with an equal resolution filter-
bank with constant modulation bandwidths (as in Fig. 1A). Fig-
ure 7, A–C, shows the temporal and spectral MPS for the three
natural sound ensembles after being filtered with the equal reso-
lution (gray lines) or the CNIC filterbank (black lines). For ref-
erence, the original MPS are shown in each panel (dashed gray
lines). As can be seen, the output spectral and temporal MPS for
the CNIC model filterbank is substantially flatter. This flattening
behavior is not seen for the equal resolution filterbank, which
exhibits a similar pattern to the original MPS. For both the equal
resolution and CNIC filterbank, there is an offset in the MPS as a
result of the minimum gain provided by the filter bandwidth
(e.g., approx. '12 dB for temporal and "7 dB for spectral in Fig.
5C,D). For all three natural sound ensembles, there was a sub-
stantial flattening of the MPS after filtering with the CNIC model
as indicated by the reduced model output MPS slopes (speech:
temporal slope ! "2.0 dB/decade; spectral slope ! "8.6 dB/
decade; vocalizations: temporal slope ! "4.4 dB/decade; spectral
slope ! "5.5 dB/decade; background: temporal slope ! "2.6
dB/decade; spectral slope ! "6.4 dB/decade).

For both the equal resolution and CNIC modulation filter-
bank models, we computed the ensemble encoding efficiency for
the three natural sound ensembles. From an efficiency perspec-
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Figure 5. Modulation tuning characteristics scale in the CNIC. A, B, Temporal and spectral modulation bandwidths show a clear
increase as function of their respective characteristic modulation frequency (slope of increment for temporal: 0.8, p , 0.01;
spectral: 0.75, p , 0.01). The selected examples from Figure 3 are indicated by A–D. C and D show the relationship between
temporal (C) and spectral (D) modulation bandwidths (surface color plots) as function of cTMF and cSMF (black dots, indicate the
cTMF and cSMF of each neuron). Note that temporal modulation bandwidths scale most prominently with cTMF. Likewise, spectral
modulation bandwidths scale most prominently with cSMF.
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tive, each receptor in the filterbank should produce identical out-
put power (flat MPS) to maximize resource utilization across the
neural ensemble. Thus an ensemble efficiency of 100% indicates
that the output power is equalized across the receptors (or equiv-
alently across modulation frequencies). Figure 8A demonstrates
an enhancement in the temporal ensemble efficiency for the
CNIC filterbank over the equal resolution filterbank (36.3% ver-
sus 3.9%; p , 0.01, bootstrap t test). This was true for all three
natural sound ensembles tested with speech and background
sounds exhibiting the lowest (10.5%) and highest (70.4%) effi-
ciency, respectively. A similar enhancement in efficiency is also
observed for the CNIC spectral modulation filterbank over the
equal resolution spectral filterbank (Fig. 8B). Spectral ensemble
efficiency of the CNIC filterbank was significantly higher for all
three natural sound ensembles when compared with the equal
resolution filterbank (33.5% versus 12.5%; p , 0.01, bootstrap t
test).

Discussion
Previous studies have demonstrated that individual auditory
midbrain neurons respond efficiently to sounds with natural-
like statistical characteristics (Attias and Schreiner, 1998b;
Escabí et al., 2003; Lesica and Grothe, 2008). Here, we provide
further evidence that tuning characteristics of CNIC neurons
are optimized across the neural ensemble so as to equalize the
modulation power of natural sounds. Thus, our data provide a
link between the ensemble characteristics of natural sounds

and the characteristics of the ensemble
filtering properties of the CNIC.

Neural modulation bandwidths scaled
in such a way that they approximately
canceled the observed 1/f MPS of natural
sounds. Specifically, modulation band-
widths increased nearly proportional to
the characteristic modulation frequency
of each neuron. Consequently modula-
tion-filtering resolution is traded-off for
filter gain to assure sufficient modulation
power transfer. Within this framework,
CNIC neurons exhibit high resolution
(small bandwidths) and low sensitivity for
low modulation frequencies where the
signal power is high and lower resolution
(large bandwidths) and higher sensitivity
at high modulation frequencies where the
signal power tends to be low for natural
sounds. This trend was present for both
spectral and temporal modulations and
the overall degree of scaling was similar
for each.

CNIC neurons exhibited inverse depen-
dencies between spectral and temporal
sound modulation sensitivity that mirrored
the spectrotemporal modulation trade-
offs observe in natural sounds. For each of
the natural sound ensembles the joint
MPS exhibited an inverse-like depen-
dence in which temporal and spectral
modulations are not independent (Fig. 2).
CNIC neurons exhibited a similar depen-
dency between characteristic spectral and
temporal modulations (Figs. 3E, 4). Pre-
vious studies have demonstrated that

spectral and temporal modulations in natural sounds are not
independent (Singh and Theunissen, 2003) and exhibit a num-
ber of structural regularities (Voss and Clarke, 1975; Attias and
Schreiner, 1998a; Escabí et al., 2003; Singh and Theunissen,
2003). Prior studies also find that the distribution of single neu-
ron MTFs in the songbird auditory system (midbrain: Mld and
forebrain structures: Field L, and CM) are optimized to minimize
redundancies and enhance the sound representation within the
low-frequency region of the MPS (,50 Hz) (Woolley et al.,
2005). Our results differ and complement their findings in a
number of important ways. First, spectral-temporal tradeoffs de-
scribed here were not observed in the songbird auditory pathways
(Woolley et al., 2005). Although it is possible that this difference
is species-specific, it is not likely due to species-specific differ-
ences in temporal modulation sensitivity alone as these appear to
be very similar in mammalian and songbird IC (Woolley and
Casseday, 2005). In the previous study the temporal modulations
examined were restricted by the spectrogram decomposition and
sounds used primarily to the rhythm range of hearing (,50 Hz;
supplemental Material, Fig. S1, available at www.jneurosci.org as
supplemental material), which is well below the limits of phase-
locking in the cat auditory midbrain which has been estimated at
+300 Hz (Joris et al., 2004). Thus, the findings from this prior
study do not generalize to the faster temporal modulations exam-
ined here such as those that are important for roughness and
pitch perception. Cat CNIC neurons were tuned out to +250 Hz
and a substantial amount of power in the ensemble MTF was
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Figure 6. Modulation gains increase systematically with characteristic modulation frequencies and bandwidths. A, Temporal
modulation gain is strongly correlated with cTMF (A, r ! 0.79 * 0.02, p , 0.01) while spectral modulation gains are strongly
correlated with cSMF (B, r!0.78*0.03, p,0.01). These trends are even stronger when one considers the relationship between
modulation gains and modulation bandwidths. C, D, As can be seen there is a marked correlation between these parameters (C,
r ! 095 * 0.01, p , 0.01; D, r ! 0.94 * 0.02, p , 0.01) and a significant increase in power with modulation frequency (7.65
dB/decade for temporal; 8.2 dB/decade for spectral). These trends oppose the MPS of natural sounds where the modulation power
decreases with modulation frequency (Fig. 2C,D).
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present out to 450 Hz (Fig. 3E). Previous
studies in the bat IC using ripple sounds
and STRFs have observed a similar range
of modulation sensitivities (Andoni et al.,
2007). Second, the whitening mechanism
and CNIC filter-bank model proposed
here relies on the concept of bandwidth
scaling where the modulation bandwidths
grow proportionally to the characteristic
modulation frequencies of CNIC neu-
rons. This proposed scaling behavior and
the resulting equalization has not been de-
scribed previously. For frequencies be-
tween 0 and 30 Hz this prior study finds a
net gain of +4.5 dB (Woolley et al., 2005,
their Fig. 3). Although this net gain can
serve to help equalize modulation power
in the low modulation frequency range as
proposed in that study, it does not fully
compensate for the 1/f decrease in modu-
lation power observed for natural sounds.
In contrast, the estimated gain across the
population of cat CNIC neurons produces
+8 dB boost in the modulation power per
decade which amounts to +20 dB gain
over an extensive range of temporal mod-
ulations (up to 500 Hz). Finally, the
present study demonstrates similar whit-
ening for both spectral and temporal di-
mensions, which has not been reported
previously.

The observed modulation filtering
characteristics differ dramatically from
auditory nerve fibers which strictly exhibit
lowpass modulation filtering and are
inconsistent with the concept of modula-
tion tuning (Joris and Yin, 1992). Al-
though we can only speculate about the
exact mechanisms underlying the trans-
formation from lowpass modulation se-
lectivity in the auditory nerve to bandpass
selectivity in the brainstem and CNIC, it is
apparent that inhibition in the brainstem
and midbrain sharpen modulation selec-
tivity and could partly underlie the ob-
served tuning behavior (Andoni et al.,
2007; Rodríguez et al., 2010).

Like the peripheral auditory filters, our
data indicate that neural tuning charac-
teristics may have evolved to efficiently
represent natural sensory signals that ex-
hibit 1/f spectrotemporal modulations.
The tuning characteristics of the peripheral auditory filters are
optimized for low-order statistics of natural sounds (Lewicki,
2002; Smith and Lewicki, 2006). An intriguing aspect of the present
study is the implication that different forms of scaling occur at dif-
ferent levels of the auditory system (e.g., carrier frequency and mod-
ulation frequency). Frequency tuning bandwidths in the auditory
nerve scale systematically with increasing characteristic frequency
(Kiang et al., 1965). This cochlear bandwidth scaling enhances tem-
poral modulations at the expense of removing detailed spectral
modulations when compared with a conventional spectrogram
(supplemental material Fig. S1, available at www.jneurosci.org as

supplemental material). Ultimately, the combined scaling behavior
for the frequency tuning filters in the cochlea and the modulation
filtering in CNIC leads to an enhancement in the encoding efficiency
for representing spectrotemporal modulations in natural sounds
(Fig. 8). The results complement previous findings in the periphery
since they suggests that the CNIC tuning characteristics are special-
ized to enhance the representation of higher-order acoustic features
in natural sounds. Future studies need to identify how this ensemble
representation is further enhanced or used at higher levels of pro-
cessing, including the auditory thalamus and cortex.

The proposed response organization is also consistent with
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Figure 7. CNIC filtering characteristics equalize the modulation power of natural sounds. A–C show the temporal (left) and
spectral (right) MPS (dashed gray lines) for the three natural sound ensembles (human speech, animal vocalizations and back-
ground environmental sounds; same as in Fig. 2). To determine the degree of power equalization conferred by the CNIC ensemble,
the MPS of natural sounds were passed through a modulation filterbank in which modulation bandwidths scale as for the CNIC
neural ensemble (see Materials and Methods). Black lines in A–C represent the CNIC model filterbank output MPS. For reference the
MPS were also filtered with an equal resolution filterbank analogous to Figure 1 A (gray lines). There is marked flattening in the
modulation power at the output of the CNIC model but not for the equal resolution filters.

A B

Figure 8. CNIC filtering characteristics enhance encoding efficiency for natural sound ensembles. A, Temporal ensemble effi-
ciency for an equal resolution filterbank (gray) and a proportional resolution filterbank where filter bandwidths scale as for CNIC
(black). The CNIC filterbank exhibits significantly higher temporal efficiency ( p , 0.01, bootstrap t test) for all three natural sound
ensembles tested (SP, speech; VOC, animal vocalizations; BACK, background; ALL, SP'VOC'BACK). B, Spectral encoding effi-
ciency is shown for the equal resolution filterbank (gray) and CNIC model filterbank (black). The spectral ensemble efficiency is
significantly higher for the CNIC model filterbank for all natural sound ensembles tested ( p , 0.01, bootstrap t test). Error bars
designate SEM.
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psychoacoustical studies on humans, which have demonstrated
that perceptually derived spectrotemporal modulation filters
have bandpass shape and approximate proportional resolution
filters. Specifically, temporal modulation tuning characteristics
for human listeners are well approximated by bandpass filters
with a quality factor of +1 (Ewert and Dau, 2000). This result
generalizes for spectrotemporal modulations since perceptually
derived spectrotemporal modulation filters are bandpass tuned
with quality factors of +1 (Verhey and Oetjen, 2010). In our data,
modulation tuning bandwidths scaled with similar quality factors
(median of 0.7 for temporal and 0.89 for spectral modulation
tuning supplemental Fig. S3, available at www.jneurosci.org as
supplemental material). Furthermore, the scaling behavior in the
CNIC extended beyond 100 Hz analogous to human data where
detection of temporal modulations and scaling is evident to sev-
eral hundred Hz (Viemeister, 1979; Dau et al., 1997). Neural
tuning characteristics in the CNIC have been shown to resemble
a number of psychophysical phenomena. In particular, the fre-
quency tuning and laminar organization of the CNIC (Schreiner
and Langner, 1997; Malmierca et al., 2008) may serve as the sub-
strate for 1/3 octave critical band perceptual resolution observed
in humans (Fletcher, 1940) and other species (Pickles, 1979;
Langemann et al., 1995). Our findings provide evidence that
modulation-tuning in the CNIC closely mirrors and may serve as
a neural substrate for psychophysical modulation sensitivity.

Power-law scaling may be a general strategy of the brain to
efficiently encode natural sensory stimuli. For example, natural
visual scenes also exhibit long-term spatiotemporal correlations
and power law scaling (Field, 1987; Ruderman and Bialek, 1994)
analogous to temporal modulations in natural sounds (Voss and
Clarke, 1975; Attias and Schreiner, 1998a; Singh and Theunissen,
2003). Like their auditory counterparts, its been demonstrated
that single neurons in the visual system can respond efficiently to
natural visual scenes (Dan et al., 1996; Vinje and Gallant, 2000).
An intriguing finding is that an optimal coding strategy for
natural visual scenes is to employ spatially compact oriented
Gabor-like filters, which resemble the receptive field structure of
neurons in the primary visual cortex (Olshausen and Field, 1996).
Aside from the fact that CNIC temporal preferences are approx-
imately an order of magnitude faster than visual cortex, STRFs in
the CNIC are well approximated by nearly identical spectrotem-
poral Gabor functions (Qiu et al., 2003). Our results lend support
to the general hypothesis that tuning characteristics of sensory
systems can exploit high-level sensory features in natural signals
in a manner that enhances sensory representations and which
may ultimately underlie perceptual sensitivity.
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