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Neural implants that deliver multi-site electrical stimulation to the nervous systems are
no longer the last resort but routine treatment options for various neurological disorders.
Multi-site electrical stimulation is also widely used to study nervous system function
and neural circuit transformations. These technologies increasingly demand dynamic
electrical stimulation and closed-loop feedback control for real-time assessment
of neural function, which is technically challenging since stimulus-evoked artifacts
overwhelm the small neural signals of interest. We report a novel and versatile artifact
removal method that can be applied in a variety of settings, from single- to multi-
site stimulation and recording and for current waveforms of arbitrary shape and size.
The method capitalizes on linear electrical coupling between stimulating currents and
recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to
predict and subsequently remove artifacts via subtraction. We confirm and verify the
linearity assumption and demonstrate feasibility in a variety of recording modalities,
including in vitro sciatic nerve stimulation, bilateral cochlear implant stimulation, and
multi-channel stimulation and recording between the auditory midbrain and cortex. We
demonstrate a vast enhancement in the recording quality with a typical artifact reduction
of 25�40 dB. The method is efficient and can be scaled to arbitrary number of stimulus
and recording sites, making it ideal for applications in large-scale arrays, closed-loop
implants, and high-resolution multi-channel brain-machine interfaces.

Keywords: artifact removal, electrical stimulation, nerve fibers, cochlear implants, neural implant, brain machine
interface, Wiener filter

INTRODUCTION

Advances in neural implant and electrical stimulation technologies, such as cochlear implants (CIs)
and vagal nerve stimulators, increasingly rely on concurrent neural stimulation and recordings
to either assess functional transformations between connected brain regions (Lim and Anderson,
2007; Kral et al., 2009; Atencio et al., 2014; Hancock et al., 2017; Vollmer, 2018; Li et al., 2019) or
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to optimize electrical stimulation via closed-loop feedback
control (Wilson et al., 1991; Schachter and Saper, 1998; Dhillon
and Horch, 2005; Lebedev and Nicolelis, 2006; O’Doherty et al.,
2011; Mc Laughlin et al., 2012; Hartmann et al., 2014). In
such applications, capacitive and inductive coupling between
the stimulating and recording electrodes leads to stimulus-
evoked artifacts in the extracellular recordings that are often
several orders of magnitude larger (i.e., milli-volts) than the
extracellular neural signals (typically micro-volts). Such artifacts
obscure neural activity and make it di�cult to interpret and
quantify neural data. Electrical stimulation artifacts are also
present in surface recordings of electroencephalogram (EEG)
and electrocorticogram (ECoG) that are more widely used
clinically with concurrent functional neural stimulations in
recent brain-machine interfaces and prosthetic devices (Peper
and Grimbergen, 1983; Groves and Brown, 2005; Allen et al.,
2010; Ho�mann et al., 2011). In order to obtain neural responses
to electrical stimuli in the above recording situations, artifact
removal is necessary to isolate neural signals for robust and
high-fidelity assessment of neural activity. Such artifact removal
will also be essential for real-time closed-loop stimulation in the
next-generation of neural implants, brainmachine interfaces, and
prosthetic devices.

Existing artifact removal algorithms invariably focus on the
recorded artifact waveforms without explicitly considering the
stimulus currents and sources that are responsible for generating
the artifacts. That is, most artifact removal algorithms do not
explicitly use the electrical stimulation current waveforms to
either predict or remove artifacts (although see Trebaul et al.,
2016). Such techniques include artifact template subtraction
(Wichmann, 2000; Hashimoto et al., 2002; Trebaul et al., 2016;
Qian et al., 2017), local curve fitting (Wagenaar and Potter,
2002), sample-and-interpolate technique (He�er and Fallon,
2008), and independent component analysis (Makeig et al., 1996;
Vigário, 1997; Gilley et al., 2006; LeVan et al., 2006; Debener
et al., 2008; Rogasch et al., 2014). Such artifact waveform-based
algorithms usually estimate artifacts by statistical analysis of
the recorded signals, which can suppress artifacts in certain
stimulation/recording paradigms. A general assumption of these
algorithms is that the recorded artifacts arise from single
isolated stimulation sources that are reproducible and non-
overlapping over time. This assumption may be valid for
classic neural implants like the cardiac pacemaker but can
deviate greatly from situations in advanced neural devices that
utilize multichannel stimulus electrodes (i.e., multiple sources)
and arbitrary stimulation waveforms with dynamically varying
current amplitude, stimulation rate and/or pattern (e.g., as for
cochlear implants). Further, such artifact removal techniques
are often di�cult to implement in real-time especially with
dynamically varying stimulus paradigms. Instead, they are mostly
used for post hoc removal of artifacts. To address the challenge
of multi-site stimulation and recording, a recent method used
advanced statistical modeling to improve spike-sorting quality
from extracellular multi-channel recordings (Mena et al., 2017).
Like other approaches, this method places assumptions on
the statistical structure of the artifacts and neural waveforms
that may not strictly hold and likewise does not directly

use the known electrical stimulation signals to remove the
artifacts. In addition, many waveform-based algorithms fail
when multiple artifacts are generated in close succession during
fast current stimulation. For example, cochlear implants (CIs)
generate hundreds to thousands of stimulus pulses per second
of varying amplitudes across multiple stimulation electrodes
that often overlap in time (Friesen and Picton, 2010), a
situation that challenges all current waveform-based artifact
removal algorithms. One solution to enhance artifact removal
in such scenarios is to decrease the rate of CI stimulation
and use constant current amplitudes, which leads to abnormal
stimulation scenarios that make it di�cult to characterize
normal stimulation and neural processing with such devices
(Friesen and Picton, 2010).

Here, we develop an optimal multichannel artifact removal
algorithm that can be applied during high-throughput multi-
site electrical stimulation with arbitrary stimulation waveforms.
Unlike nearly all other artifact removal algorithms, which are
blind to the stimulation currents (i.e., the algorithm does
not explicitly utilize the input current waveforms to predict
or remove the artifacts), our method capitalizes on the fact
that transformation between electrical stimulation currents
and artifacts on the recording arrays arises through linear
capacitive and inductive coupling (Rivnay et al., 2017) and
the fact that stimulation currents are actually known a priori
in most instances. We approach the artifact removal by first
establishing the assumption that recorded artifacts behave
linearly with respect to the stimulation currents. This allows
us to derive optimal linear filters to model the transformation
between each stimulating-recording electrode pair. The linear
transfer functions for each stimulation and recording site are
estimated as a digital filter, i.e., the Wiener filter, and can
be updated as required during the recording procedure to
track the adaptive changes in electrical coupling over time
(due to long-term change in impedance, electrode movement
etc.). The procedure is versatile and can be applied to a
variety of neural recording modalities including single, multi-
unit, and continuous field potential recordings. Furthermore,
because the algorithm estimates the transfer functions between
every stimulation and neural recording electrode, the procedure
can be applied irrespective of the stimulation currents used.
It is thus compatible with single and multi-site stimulation,
high-rate stimulation, and is applicable to electrical stimuli
with arbitrary pulse amplitudes and shapes. By applying
the procedure to sample neural datasets (single and multi-
channel stimulation), we demonstrate a vast signal-to-noise ratio
improvement of ⇠25�40 dB.

MATERIALS AND METHODS

Artifact Prediction and Removal
Multi-Input Multi-Output Artifact Prediction Wiener

Filter

We develop an optimal Wiener filter algorithm to predict neural
recording artifacts upon delivering electrical stimulation currents
on a multi-channel stimulating electrode array. The predicted
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artifacts are then subtracted from the actual neural recording
trace to yield a noise reduced estimate of the neural activity.

We assume a generalized multi-input (stimulation) multi-
output (recording) framework for developing a linear filter
approximation of the recording artifact. Given that electrical
stimulation artifacts are the result of linear capacitive and
inductive coupling between the stimulating and recording
electrodes (Rivnay et al., 2017), we model the transformations
between the electrical stimulus and recorded artifact as a linear
Wiener filter with unknown impulse response (or equivalently,
transfer function). Each stimulating and neural recording
electrode pair has its own characteristic transfer function and
thus a unique impulse response, which can be determined
based on the input and output data. The composite multi-site
stimulation artifact is modeled as a linear sum of the artifacts
generated by each stimulation channel and thus we have:

ym[k] =

NX

n=1
xn[k]⇤hnm[k] m = 1, . . . ,M (1)

where k is the discrete time index, ⇤ is the discrete convolution
operator, ym[k] is the predicted artifact for channel m (ym in
vector form), hnm[k] is the impulse response between the n-th
stimulation channel and m-th neural recording channel (hnm
in vector form), and xn[k] is the electrical stimulation signal
applied to stimulation channel n (xn in vector form). In matrix
form y = hx where y = [y1 · · · yM] is a matrix containing the
predicted outputs for theM recording channels, x = [x1 · · · xN] is
a matrix containing the input electrical stimulation signals across
N stimulation channels, and:

h =

2

64

h11 . . . h1M
...

. . .
...

hN1 . . . hNM

3

75 (2)

is an NxM matrix containing the impulse response vectors
(hnm) between all stimulation and recording channels.
The impulse responses are represented as column vectors,
hnm = [ hnm[0] · · · hnm[L � 1] ]T , which contain the impulse
response time coe�cients between the n-th input and m-th
output, where L represents the filter order. Since there are a total
of L samples for each of the impulse response vectors, the matrix
h contains a total of NLxM coe�cients.

The goal is to derive the filter matrix h using experimental
measurements. The estimated filter matrix can then be used
to predict the recorded artifacts. The optimal solution that
minimizes the mean squared error of the predicted artifact is
obtained via the Wiener-Hopf equation (Hayes, 1996).

ĥ = (Cxx)
�1Ryx (3)

where ĥ is the filter matrix solution that minimizes the mean
squared error between the predicted and real artifacts,

Cxx =

2

64

cx1x1 . . . cx1xN
...

. . .
...

cxNx1 . . . cxNxN

3

75 (4)

represents the stimulation signal covariance matrix which
contains correlation functions (cxnxl ) between the n-th and l-th
(l, n = 1, . . . ,N) input channels, and:

Ryx =

2

64

ry1x1 . . . ry1xN .
...

. . .
...

ryMx1 . . . ryMxN .

3

75 (5)

is amatrix containing the cross-correlation functions between the
m-th output and n-th input channels (rymxn ).

Upon deriving the multi-site filters using Eqn. 3, ĥ, the stimuli
artifacts are then predicted by convolving each of the estimated
sub-filter impulse responses, ĥnm, with the corresponding input
signals and applying Eqn. 1. Finally, the predicted artifacts are
subtracted from the recorded data yielding the noise-reduced
estimate of the neural traces. Although Eqn. 3 is derived for
multi-input multi-output (N > 1, M > 1) neural recording and
stimulation scenarios, the procedure is also compatible with
multi-input single-output (N > 1, M = 1), single-input multi-
output (N = 1, M > 1) and single-input single-output (N = 1,
M = 1) neural stimulation and recording scenarios.

As a note, we point out that the form of the predictive
Wiener filter used here di�ers from blind deconvolutionalWiener
filters used in previous reports by others for artifact removal
which assume that the artifact-generating signals are unknown
(Izzetoglu et al., 2005; Zhi and Chin, 2006; Sweeney et al.,
2012). Deconvolutional filters use the signal and noise spectrum
statistics to optimally reject the artifact signal via deconvolution.
In general, because the signal and noise spectrums often overlap,
such approaches tend to distort the neural signals of interest
upon removing the artifacts and are not intended to fully remove
the artifact. In our case, the Wiener filter is instead used to
predict the recorded artifact from known inputs, which can then
be removed from the neural recording by subtraction without
distorting the neural signal.

Linearity Assessment and Artifact
Removal Quality
Linearity Assessment

The principal underlying assumption required for the proposed
artifact prediction and removal method is the linear relationship
between the stimulation current and recorded artifact. Such a
relationship is expected given the passive conduction properties
of the tissue and the capacitive or inductive coupling with the
stimulation current at the recording electrode interface (Trebaul
et al., 2016; Rivnay et al., 2017). However, it has been suggested
that recording artifacts can behave in a non-linear fashion (Mena
et al., 2017), which would limit the general applicability of the
proposed approach. Thus, we quantified the extent of the linearity
(or non-linearity) of the stimulus current-artifact relationship
by explicitly testing the scaling and additivity properties, which
are requisites for a linear system (Lathi, 2000). First, for each
of the recording scenarios tested, we delivered currents of
varying amplitudes. This allowed us to explicitly test how artifact
amplitudes scalewith respect to the input current amplitudes.We
also performed a set of experiments in which we concurrently
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delivered current pulses across multiple electrodes (see section
below: “Recording in the Rat Auditory Midbrain and Cortex”).
This second set of recordings allowed to test how multiple
stimulus currents add together to generate a composite artifact.

Signal to Noise Ratio Estimation

We used a shu�ed trial procedure to estimate the artifact (noise)
and neural signal power spectra which were then used to estimate
the signal-to-noise ratio (SNR) of the neural recording or the
artifact reduction ratio (ARR). The procedure requires that we
deliver an identical electrical stimulation signal from two trials in
order to estimate the signal and noise power spectrum. Consider
a recorded neural trace:

y = yn + ya (6)

where yn represents the artifact-free neural trace (i.e., no artifact)
and ya represents the recorded artifact. If y0 represents the data
recorded in the second trial of a repeated experiment (i.e., same
electrical stimulation signal) then the artifact should be identical
between the two trials (ya) so that:

y
0

= y
0

n + ya (7)

where here, y0

n, is the neural response component for the
second trial. This component di�ers from the first trial response
(yn) because of neural variability. Computing the cross-spectral
density (CSD) between the two trials yields:

8yy0 (&) = 8yny
0

n
(&) + 8ynya(&) + 8yay

0

n
(&) + 8yaya(&)

(8)
Similarly, the power spectral density (PSD) of the first trial is:

8yy (&) = 8ynyn (&) + 8ynya (&) + 8yayn (&) + 8yaya (&)
(9)

Given that the artifact signal is reproducible across trials and
typically much larger than the recorded neural activity (e.g.,
as seen for the examples of Figures 1–4), the artifact term in
Eqn. 8 dominates:

8yy0 (&) ⇡ 8yaya(&) (10)

so that CSD between trials approximates the artifact noise
spectrum. Furthermore, we note that for su�ciently long
recordings, 8yayn (&) and 8yay

0

n
(&) yield identical spectrum

estimates on average and that 8ynyn (&) � 8yny
0

n
(&) as a result

of neural trial variability between trials. Thus, the neural signal
spectrum can be approximated by subtracting the CSD from the
PSD.

8ynyn (&) ⇡ 8yy(&) � 8yy0 (&) (11)

The signal to noise ratio is then approximated by:

SNR (&) =
8Signal (&)

8Noise (&)
⇡

8yy(&) � 8yy0 (&)

8yy0 (&)
(12)

In the above, all cross and power spectral density estimates
were obtained using a Welch average periodogram and a
Kaiser window (b = 5, N = 256 time samples or 21 ms). To

confirm the validity of the approximations used to derive Eqn.
12, we also estimated the SNR using an artifact free neural
recording segment. 8Signal (&) was estimated by collecting a 15-
second neural trace without any electrical stimulation, which we
then used to estimate the signal spectrum. We also estimated
the noise spectrum directly from the Wiener filter predicted
artifacts by computing the spectrum of the predicted artifact.
Both procedures produce quantitatively similar results when
compared to the original estimates (within < 3 dB) confirming
the validity of the approximations used to derive Eqn. 12.

Artifact Reduction Ratio (ARR)

In addition to defining the SNR, we also defined and measured
an artifact reduction ratio (ARR). This metric quantifies the
reduction in artifact power following artifact removal and thus
provides a measure of the artifact removal quality. It is defined as:

ARR (&) =
SNRpost (&)

SNRpre (&)
=

8Noise,pre (&)

8Noise,post (&)
(13)

where SNRpre (&) is the SNR prior to artifact removal
and SNRpost (&) is the measured SNR after applying the
artifact removal algorithm. Since the neural signal spectrum is
unchanged by the artifact removal procedure, the above can
also be estimated directly by taking the ratio of the noise
spectrum prior to (8Noise,pre (&)) and post-removal of the artifact
8Noise,post (&)). For the aperiodic stimulation used in inferior
colliculus (described below), we note that the ARR metric is
well defined for all frequencies since, in that case, the signal and
noise spectrum is continuous at all frequencies. However, for
periodic electrical stimulation such as in the cochlear implant
study (e.g., electrical stimulation periodically at 300 Hz, described
below), the electrical stimulation produced periodic artifacts
with harmonic components in the signal spectrum at multiples
of the stimulation frequency. Thus, the signal spectrum and
hence the ARR contains signal components only at harmonics
of the stimulation frequency and are thus well defined only at
these components.

Depending on the data that were available, the ARR was
estimated in one of two ways. For the sciatic nerve recordings
(see section below: “Mouse Sciatic Nerve Recordings”), the
isolated artifacts were obtained during the treatment of lidocaine,
which is a non-selective sodium channel blocker that blocks
virtually all neural activities in the sciatic nerve. Thus, for
this condition, there was no need to remove the neural signal
spectrum numerically in order to isolate the artifact spectrum
prior to estimating the ARR (as in Eqn. 11). The spectrum prior
to artifact removal was obtained as the spectrum of the original
lidocaine recording (pre-artifact removal), while the spectrum
post-artifact removal was obtained by subtracting the predicted
artifact from the original lidocaine recording (using the Wiener
filter method) and subsequently computing the power spectral
density. For both, the cochlear implant stimulation and auditory
midbrain stimulation recordings, neural activity and artifacts
were not isolated chemically using lidocaine. Thus, we estimated
the artifact and neural spectrums and the corresponding ARR
numerically using shu�ed cross-spectral density procedure as
described above (Eqns. 6�12).
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FIGURE 1 | Artifact removal from neural recordings in mouse sciatic nerve. (A) Electrical stimulation current signal (120-s duration, 0.5 Hz, 0.2 ms duration, cathodic
current) with six amplitudes (10, 20, 40, 80, 160, and 320 µA; 10 stimuli per amplitude condition) delivered in pseudo random order. (B) Experimentally recorded
artifacts after lidocaine treatment (purple) overlapped with the Wiener filter-predicted artifact (red). (C) Magnified views of the recorded artifacts (lidocaine, purple)
superimposed with predicted artifacts (Wiener filter, red) from different stimulating amplitudes. (D) Input current amplitudes and the peak-to-peak amplitudes of the
recorded post-lidocaine artifacts follow a linear relationship (r2 = 0.9997 ± 0.0004, Mean ± SD, N = 40). (E) The peak-to-peak amplitudes of the recorded (lidocaine)
and predicted (Wiener filter) artifacts follow a linear relationship (r2 = 0.9997 ± 0.0004, Mean ± SD, N = 40). (F) The suprathreshold recordings (pre-lidocaine
treatment, 320 µA; black curves) are superimposed with the post-lidocaine artifact (purple, left). The predicted (Wiener filter) artifacts of four estimation scenarios
(colored, in gray box, top) are shown along with the isolated action potentials after artifact removal (gray box, bottom). Purple: lidocaine treated artifact (top); Blue:
predicted artifact using the strongest subthreshold current estimation (10 trials); Green: predicted artifact using the lowest five current estimation (10–160 µA, 50
trials); Brown: predicted artifact using the lowest five current (10–160 µA) along with 5 trials of 320 µA current estimation (55 trials). Red: predicted artifact using all
the six-current estimation (10–320 µA, 60 trials). The isolated action potentials (obtained by subtracting the predicted artifacts from suprathreshold responses) are
displayed in the bottom row (same color scheme). Arrow head indicates the artifact residue after the subtraction; double arrow indicates nerve activity evoked from
the fiber. (G) The artifact reduction ratio for the four estimation scenarios are shown with shaded error bar (Mean ± SD; N = 40 fibers). The ARR achieved using the
highest subthreshold current estimation method is 22.8 ± 4.4 dB (blue), using the lowest five current estimation method is 28.1 ± 3.5 dB (green), using the lowest
five current along with 5 trials of 320 µA current estimation method is 29.9 ± 4.7 dB (brown), using all the six-current estimation is 39.9 ± 3.3 dB (red). The average
ARR are calculated within 300–3000 Hz.
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FIGURE 2 | Artifact removal during bilateral cochlear implant stimulation and concurrent extracellular recordings in rat inferior colliculus. (A) Sequences of binaural
biphasic pulses were delivered at 300 Hz stimulation rate (0 ms interaural time delay shown; 10 sequences delivered; each sequence lasting 200 ms duration; the
segment shown is between 10 and 50 ms post onset). Example segment containing a raw neural recordings (black) and predicted artifacts (blue) demonstrates that
both are highly overlapped. The cleaned neural recording trace obtained by subtracting the predicted artifact from the original recording (red, superimposed) show
no visible signs of artifact signals. (B) Zoomed version of the cleaned neural recording signal (red). Dashed lines indicate the time instances of the recorded artifacts.
(C) Power spectrum of the neural recording before (black) and after (red) artifact removal. The artifact spectrum contains energy at harmonics of the 300 Hz
fundamental frequency of the stimulus. The predicted artifact spectrum (obtained as the cross spectrum between recording trials, see “Materials and Methods”) is
shown in blue and largely overlaps the recorded spectrum prior to artifact removal (black). (D) Shows the artifact reduction ratio. Artifacts are reduced by an average
of 27.2 dB (measured at harmonics of 300 Hz).
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FIGURE 3 | Predicting and removing time-varying artifacts and testing for linearity during bilateral cochlear implant stimulation. (A) Neural recordings were obtained
at multiple interaural time differences (–160 to +160 us; 40 us steps) using 300 Hz pulse trains modulated with a Hanning window (see “Materials and Methods”).
The predicted artifacts (red) are shown at multiple magnifications and closely match the recorded artifacts (black). (B) Cleaned recordings obtained by subtracting
the Wiener filter predicted artifacts from the original recordings are shown at two different time scales (ITD = �160 ms, middle; ITD = 0 ms, bottom). (C) The input
current peak-to-peak amplitude and the recorded peak-to-peak voltage of the artifacts exhibit an exceptionally high correlation (r2 = 0.9981± 0.0001;
Mean ± SEM), indicative of a linear relationship. (D) The predicted and recorded artifact peak-to-peak amplitudes are likewise highly correlated and consistent with a
linear input-output relationship. The data shown in panels (C,D) are for the 0 ms ITD condition. Error bars designate SD.

Mouse Sciatic Nerve Recordings
Surgical Procedures

All procedures were approved by the University of Connecticut
Institutional Animal Care and Use Committee. Sciatic nerves
of male C57BL/6 mice (6–8 weeks, Taconic, Germantown,
NJ, United States) were harvested for extracellular recordings
from teased nerve filaments as detailed previously (Chen et al.,
2017; Ilham et al., 2018). Mice were anesthetized by isoflurane
inhalation, euthanized by exsanguination from perforating the
right atrium, and perfused through the left ventricle with
oxygenated Krebs solution (in mM: 117.9 NaCl, 4.7 KCl, 25
NaHCO3, 1.3 NaH2PO4, 1.2 MgSO4, 2.5 CaCl2, and 11.1
D-glucose). Bilateral sciatic nerves of ⇠30 mm long were
harvested from their proximal projection to the L4 spinal cord

to their distal branches innervating gastrocnemius muscles and
transferred to a custom-built chamber perfused with oxygenated
Krebs solution at 30�C. The distal end of the sciatic nerve
(⇠5 mm) was gently pulled into a recording compartment
filled with mineral oil and carefully split (i.e., teased) into fine
neural filaments (⇠25 µm thick) for extracellular recordings of
action potentials.

Stimulation and Recording in the Sciatic Nerve

Preparation

Action potentials were evoked at the un-teased end of the
sciatic nerve using a platinum-iridium electrode (FHC Inc., ME,
United States). Electrical currents were delivered using a sub- and
supra-threshold stimulation protocol consisting of a 120-s long
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FIGURE 4 | Artifact removal during a single channel electrical stimulation of the auditory midbrain and concurrent recording in auditory cortex. (A) Random Poisson
distributed pulse sequence (average pulse rate of 16 Hz) were delivered to an electrode in auditory midbrain of a rat. Highpass filtered (B) and raw (C) neural
recordings from a cortical electrode are dominated by the electrical artifacts (top). The estimated Wiener filters are used to predict the recorded artifacts (middle
panels). Subtracting the artifacts from the neural recordings yields noise reduced estimates of the neural activity (bottom). (D) Zoomed sample waveforms showing
the filtered extracellular signals after artifact subtraction (* and ** from panel (B), bottom). (E) Signal to noise ratio prior to and after subtraction of the predicted
artifacts (blue and black curve, respectively). The artifact reduction ratio is superimposed on the same panel (green curve).

low-frequency stimulations (0.5 Hz, 0.2 ms duration, cathodal
current) with six amplitudes delivered in pseudo random order
(10, 20, 40, 80, 160, and 320µA; 10 stimulus pulses per amplitude
condition) as shown in Figure 1A.

Extracellular recordings from multiple teased nerve filaments
were conducted by a custom-built 5-channel electrode array
consisting of micro-wires deployed parallel to each other with
⇠150 µm clearance as described previously (Chen et al., 2017;
Ilham et al., 2018). Recordings were digitized at 25 kHz,
band-pass filtered (300�3000 Hz) and stored on a PC using
an integrated neural recording and stimulating system (IZ2H

stimulator, PZ5-32 neurodigitizer and RZ5D processor, TDT,
Alchua, Florida, United States).

Application of Lidocaine for Acquiring Isolated

Artifacts

To quantify the e�ciency of artifact removal via the Wiener filter
artifact removal method, we used a non-selective sodium channel
blocker (lidocaine) to removemost if not all neural activity, which
allowed us to obtain recordings of isolated artifacts. A bronze
tube (4 ⇥ 4 mm cross section) was placed over the sciatic
nerve to isolate a small segment of the nerve trunk (⇠4 mm)
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for lidocaine application. On both edges are small notch holes
to allow nerve trunk to go through, which were lined with
petrolatum to prevent solution exchange between inside and
outside the bronze tube. Krebs solution inside the bronze tube
was replaced with lidocaine (2% dissolved in saline, ⇠0.2 ml) for
5 min, and then the bronze tube was removed for bath washout.
The same stimulation protocol mentioned above was conducted
immediately after lidocaine application to obtain isolated artifacts
for the six-amplitude stimulation current signal.

The benefits of applying lidocaine are as follows. First,
lidocaine treatment prevents action potential generation, which
allows us to isolate the artifact signal in the absence of neural
activity. This is useful for validating the accuracy of the
artifact prediction since there is no confounding neural activity.
Second, the prediction filters obtained during lidocaine treatment
were also used to predict and remove the artifacts obtained
in the absence of lidocaine treatment during supra-threshold
stimulation. Thus, the approach allows us to cross validate our
artifact removal algorithm by comparing theWiener filter artifact
cancelation performance against the pure artifact recordings
under lidocaine treatment at supra-threshold stimulation levels.

Estimating Artifact Prediction Filters and ARR

Artifact prediction filters were estimated using Eqn. 3 for four
di�erent scenarios. First, we used the highest subthreshold
current (without evoking action potentials) to estimate the
artifact prediction filters using Eqn. 3. For this condition, there
were only 10 pulses delivered so that the artifact prediction
filter was estimated using only 10 measurements. We refer
to this condition as the subthreshold filter. This subthreshold
method of estimating the Wiener filter was only used for the
sciatic nerve recordings and was not used subsequently for the
cochlear implant or auditorymidbrain stimulation. Next, we used
lidocaine treated recordings, which lack neural activity, to derive
the artifact prediction filters using three approaches. For the first
lidocaine condition, we used the recordings containing currents
between 10 and 160 µA to derive the Wiener filter using Eqn.
3. Next, we used the recordings containing stimulus currents
between 10 and 160 µA along with the first five trials of 320 µA
artifacts to estimate the Wiener filters and then performed
cross validation by comparing the predicted artifacts with those
from the remaining five trials at 320 µA stimulation. Finally,
we estimated the Wiener filers using all of the recorded data
from both sub- and supra-threshold stimulation under lidocaine
treatment (10�320 µA).

These four filters were then used to predict the stimulation
artifacts during the 320 µA current stimulation scenario, which
were subtracted from the neurophysiological recordings to isolate
the supra-threshold nerve response evoked by 320 µA current
stimulation. The artifact removal quality was assessed with the
ARR defined above (Eqn. 13) for each scenario.

Bilateral Cochlear Implant Stimulation in
Rats
Surgical Procedures

To illustrate the artifact removal during CI stimulation, we
used example data from two female Wistar rats, one of which

was normally hearing, the other neonatally deafened by daily
intraperitoneal (i.p.) injections of 400 mg/kg kanamycin from
postnatal day 9 to 20 (Osako et al., 1979; Rosskothen-Kuhl
and Illing, 2012). The animals were part of studies designed to
determine factors governing sensitivity to binaural cues delivered
via direct, intracochlear stimulation similar to that used in clinical
CI devices. These data were obtained at the City University of
Hong Kong, using procedures licensed by the Department of
Health of Hong Kong (license number 16�52 DH/HA&P/8/2/5)
and approved by the Animal Research Ethics Subcommittee
of City University. All surgical procedures, including CI
implantation and craniotomy, were performed under anesthesia,
which was induced with an i.p., injection of ketamine (80 mg/kg)
and xylazine (12 mg/kg) and maintained by continuous i.p.,
infusion of ketamine (17.8 mg/kg/h) and xylazine (2.7 mg/kg/h)
in 0.9% saline solution at a rate of 3.1 ml/h, and the animal’s
body temperature was maintained at 38�C using a feedback-
controlled heating pad (RWD Life Sciences, Shenzhen, China).
The cochlear implantation methods are described in detail in
Rosskothen-Kuhl and Illing (2012); Rosskothen-Kuhl et al. (2018).

In short, four rings of an eight-channel intracochlear
electrode carrier (ST08.45, Peira, Beerse, Belgium) were inserted
through a cochleostomy in the medio-dorsal direction into
the middle turn of both cochleae. The tip electrode ring
of each intracochlear array was used to deliver electrical
stimuli, while the second, adjacent electrode served as ground.
A craniotomy was then performed bilaterally of the central
cranial suture, just anterior to lambda, and a single-shaft,
32-channel silicon array electrode (ATLAS Neuroengineering,
E32-50-S1-L6) was inserted stereotaxically into the inferior
colliculus (IC) through the overlying occipital cortex using a
micromanipulator (RWD Life Sciences).

Electrophysiology

Electrical stimuli were generated using a Tucker Davis
Technology (TDT, Alachua, Florida, United States) IZ2MH
programmable constant current stimulator (TDT, Alachua,
Florida, United States) running at a sample rate of 24414 Hz. To
verify that the cochlear implantation was successful and yielded
symmetric evoked responses at comparatively low thresholds
(typically less than 100 µA peak) in each ear, electrically evoked
auditory brain stem response thresholds were measured for each
ear individually. This was done by recording scalp potentials
with subcutaneous needle electrodes implanted over the vertex
and each bulla, averaged over the presentation of 400 individual
biphasic electrical stimulus pulses.

Extracellular signals were recorded at a rate of 24414 Hz with
a TDT RZ2 with a NeuroDigitizer headstage and BrainWare
software. Neural tuning to interaural time di�erences (ITDs) of
binaurally delivered pulse trains was then measured by recording
extracellular responses of IC neurons to 200 ms long trains of
anode leading, biphasic electrical pulses (duty cycle: 40.96 µs
positive, 40.96 µs at zero, and 40.96 µs negative), with peak
pulse amplitudes approximately 6 dB above neural response
thresholds and a rate of 300 pulses per second. The pulses
were delivered bilaterally to both ears and the ITD between
the left and right ear was varied (ITD = �160, �80, �40,
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0, +40, +80, and +160 µs). In one set of recordings, the
amplitude of the pulse sequences was modulated with a Hanning
window. This allowed us to test for linearity of the stimulus
current to artifact relationship and ultimately allows us to
determine whether the Wiener filter artifact prediction method
is able to generalize and predict dynamic time-varying artifacts.
The recordings typically exhibited short response latencies (⇡
3�5ms), which indicates that they probably come predominantly
from the central region of IC.

Using the suprathreshold recording traces, we applied Eqn.
3 and derived the Wiener artifact prediction filters for each
recording. The estimated filters were then used to predict and
subsequently subtract the recording artifacts from the recorded
traces. Eqn. 3 was applied in a variety of ways in order to
demonstrate the flexibility of the Wiener filter method. For the
first recording, we treated each ITD condition separately, and
derived one artifact prediction filter per condition (Figure 3,
shown for 0 ms ITD). For this example, the artifacts associated
with each ITD condition are highly reproducible because the
pulse amplitude and ITD of the left and right ear pulse was
not varied for each individual condition. This allows us to
measure a single composite artifact filter for each individual
ITD condition. For the second example (Figure 3), we used
pulses that varied dynamically over time and we included all
ITD conditions during the filter estimation. For this example,
each ITD produces a unique artifact waveforms and the goal was
to derive filters that could generalize across all of the recorded
conditions. We did so by treating the pulse sequences of the left
and right ear as distinct inputs (2 input Wiener filter). Thus,
for each recording channel, we obtained two separate filters, one
for the left and the other for the right channel. These filters
were then individually convolved with the left and right ear
pulse sequence (with the appropriate ITD) and subsequently
summed to derive the final predicted artifact (Eqn. 1 for N = 2).
Finally, we tested the quality of the artifact prediction achieved
either by applying Eqn. 3 one recording channel at a time or
by considering all recording channels simultaneously (in matrix
form, multi-output scenario). Regardless of which approach we
used to estimate the artifact prediction filters, the results were
identical and within the machine precision (e.g., RMS error for
example of Figure 3 is 1.4⇥ 10�29 %).

Electrical Stimulation and Recording in
the Rat Auditory Midbrain and Cortex
Surgical Procedures

All procedures were approved by the Institutional Animal
Care and Use Committee of the University of Connecticut.
Recordings were obtained from right cerebral hemisphere of
adult male Brown Norway rats. Anesthesia was induced with
ketamine and xylazine and maintained throughout the surgery
and recording procedures. Depth of anesthesia was monitored
using pedal reflex, heart rate, and blood oxygen saturation (SpO2)
measured by a pulse oximeter. A heating pad was also used
to maintain the animal’s body temperature at 37.0 ± 1.0�C.
Craniotomies were performed over the temporal cortex to make
both cortex and IC regions accessible. Dexamethasone and

atropine sulfate were administered to reduce cerebral edema and
secretions in the airway.

Electrophysiology

Sixteen channel acute neural recording probes (NeuroNexus
5 mm probe; 16-linear spaced sites with 150 um separation; site
impedance ⇠100 K�) were used to record neural activity and
also to deliver electrical stimulation to the IC. Stimulating and
recording probes were grounded to the animal’s neck muscle and
the eye bars holding the animal in place, respectively (Lim and
Anderson, 2006). The probes were inserted with a high precision
LS6000 microdrive (Burleigh EXFO). A 4-channel acute single-
shank recording tetrode (Qtrode, NeuroNexus Inc; 5 mm shank
length, tetrode with 25 um site separation; site impedance ⇠1�3
M�) was simultaneously inserted into auditory cortex (AC).
Penetration sites were chosen within the depth range of cortical
layer IV where AC receives its inputs from auditory thalamus.
A sequence of pure tones with varying frequency and attenuation
was initially played to the animal’s left ear (contralateral to the
brain opening) and brain responses were recorded to generate
frequency response areas (FRA) to verify probes placements in
the central nucleus of IC and AC.

Neural activity was recorded digitally at a sampling rate of
12 kHz using a PZ2 preamplifier and RZ2 real time processor
(TDT, Alchua, Florida, United States). Electrical stimuli were
delivered to the IC electrode via the IZ2 stimulation module
(TDT, Alchua, Florida, United States). Electrical pulse sequences
with amplitudes of either 40 or 10 µA were transmitted to
a single electrode (Figure 4) or independently across multiple
electrode channels (Figures 5, 6), respectively (see below for
details). Neural activity was then recorded from the auditory
cortical probe for the duration of each stimulus.

Single-Channel and Multi-Channel Electrical

Stimulation

We first delivered Poisson-distributed biphasic pulse sequence
during single channel electrical stimulation. A random sparse
sequence of impulses with arrival time following Poisson
point process and impulse rate of 16 Hz was first generated
(86 s duration; delivered twice). The impulse sequence was
convolved with a biphasic pulse (164 µs duration and 40 µA
current amplitude) to produce the current waveform used for
electrical stimulation.

For multi-site electrical stimulation, we delivered a random
quad-pulse train sequence (RQP; 86 s duration; delivered twice).
The RQP sequence is generated by delivering biphasic pulses
(164 µs duration and 10 µA amplitude) concurrently across 4
randomly chosen electrode channels every 40 ms yielding an
average pulse rate of 100 pulses/s as illustrated in Figure 5.
This multi-site sequence produces a random spatio-temporal
patterned set of pulses that are delivered across the 16-channel
electrode array. We also delivered an RQP sequence in which
the amplitude of the pulses was varied dynamically over time
(Figure 6). Pulse amplitudes for this sequence varied between 0.1
and 10 µA in logarithmic steps (11 steps total). Because the pulse
amplitudes scale over two orders of magnitude and the pulses
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FIGURE 5 | Artifact removal during high throughput multi-site electrical stimulation. (A) Spatio-temporal pulse sequence applied to a 16-channel probe placed in the
auditory midbrain of a rat. Highpass filtered (B) and raw (C) neural recordings from a cortical electrode are dominated by the electrical artifacts (top). The estimated
multi-channel Wiener filters are used to predict the recorded artifacts (middle panels). Subtracting the artifacts from the neural recordings yields noise reduced
estimates of the neural activity (bottom). (D) Zoomed sample waveforms showing the filtered extracellular signals after artifact subtraction (* and ** from panel (B),
bottom). (E) Signal to noise ratio prior to and after subtraction of the predicted artifact is superimposed on the same panel (gray and black curve, respectively). The
artifact reduction ratio obtained using the whole data segment and the cross-validated ARR obtained using half of the data are superimposed on the same panel
(dark and light green curves, respectively).

summate across channels, this multi-channel sequence allows us
to test for linearity of the current-artifact relationship.

RESULTS

We demonstrate the Wiener filter e�ectiveness for predicting
and removing neural recording artifacts during single and multi-
channel electrical stimulation for both high-frequency spiking
activity and low-frequency local field potentials (LFP) in a variety

of recording modalities. The success of the artifact removal
method is evaluated by comparing the residual artifacts across
repeated stimulation trials and estimating neural recording SNR
as well as the ARR before and after removing artifacts.

Single-Channel Electrical Stimulation of
Sciatic Nerve
Monopolar stimulus pulses (0.2 ms duration, cathodal current,
0.5 Hz stimulation rate) with 6 current amplitudes (10�320 µA,
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A
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FIGURE 6 | Removing artifacts during dynamic multi-site electrical stimulation and testing for linearity. (A) Dynamically time-varying current pulse sequences were
delivered across 16-channel recording probe in the rat auditory midbrain. Stimulation sequences consist of concurrent activated channels (4 randomly selected
channels; every 40 ms) with pulse amplitudes that vary dynamically and randomly (between 0.1 and 10 µA, color indicates current strength; log-steps; see section
“Materials and Methods”). (B) The recorded neural traces and predicted artifacts are shown for two of four recording channels along with the cleaned neural traces.
The multi-channel Wiener filter accurately predicts the recorded artifacts and there no evident signs of residual artifacts upon removal (C) The magnified cleaned
neural traces (*, **, and *** from panel (B), bottom) shown no visible artifact distortions. The gray dashed lines indicate time instants that contained visible artifacts
before removal. (D) The predicted and actual recorded artifact peak-to-peak amplitudes exhibit a high correlation (r2 = 0.9981± 0.0001, Mean ± SEM) suggesting
that the artifacts are linearly related to the input currents.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2020 | Volume 14 | Article 709



fnins-14-00709 July 15, 2020 Time: 17:9 # 13

Sadeghi Najafabadi et al. Optimal Multichannel Artifact Prediction and Removal

octave increments, both sub- and supra-threshold) were
delivered in pseudo random order to one end of sciatic nerve
with a platinum iridium electrode (Figure 1A). Evoked action
potentials along with stimulation artifacts were recorded from
40 teased sciatic nerve filaments and the quality of artifact
removal using the proposed linear Wiener filter was assessed
under various conditions.

The artifact prediction filter accurately predicts the recorded
artifacts regardless of the current amplitude delivered, as
shown in Figure 1B, where a representative recording of the
lidocaine treated artifacts is superimposed with the Wiener
filter predicted artifact (Wiener filter estimated using currents
between 10 and 320 µA under lidocaine). The prediction
filter was obtained by correlating the input stimulation current
with the recorded artifacts using the Wiener-Hopf Equation
(Eqn. 3). This filter is subsequently used to filter the input
current in order to predict the artifacts. As seen for the
entire session, the recorded artifacts under lidocaine treatment
(purple) are highly overlapped with and indistinguishable from
the predicted artifacts (red). Likewise, magnified views of the
recorded artifacts from di�erent stimulating amplitudes are
indistinguishable from the predicted artifacts as displayed in
Figure 1C. The overlapping waveforms between the actual and
the linear Wiener-filter predicted artifact verify the hypothesis
that recording artifacts follow a linear relationship with respect to
the input current signals. We explicitly tested for linearity by first
plotting the relationship between input current amplitude and
the peak-to-peak amplitude of recorded artifact which showed
an exceptionally high correlation coe�cient across all recordings
(Figure 1D; r2 =0.9997± 0.0004, Mean ± SD, N = 40). Similarly,
the relationship between the peak-to-peak amplitude of the
recorded (with lidocaine) and the linear filter predicted artifacts
was likewise highly correlated (Figure 1E; r2 =0.9997 ± 0.0004,
Mean ± SD, N = 40). These results suggest that, for this
experimental preparation, the recorded artifacts scale linearly
with respect to the current input, such that the linear Wiener
filter accurately predicts the recorded artifacts regardless of the
amplitude of the stimulating current.

The artifact prediction and removal procedure accurately
isolated neural responses for a range of filter estimation
conditions. The artifact prediction filters were estimated using
artifact recordings either from subthreshold stimulation or
under lidocaine treatment (see section “Materials andMethods”).
The estimated filters were then used to predict and cancel
out the recording artifact during suprathreshold stimulation
(pre-lidocaine at 320 µA). Figure 1F shows a representative
suprathreshold recording (320 µA current stimulation; black
curves) along with the predicted artifacts derived from each
of the estimated Wiener filters (gray box). As a control, we
also obtained artifact recordings following the application of
lidocaine which blocks action potential generation so that the
recorded signals consisted of pure stimulus artifacts as shown in
Figure 1F (purple, top left). This post-lidocaine artifact signal
was subtracted from the original recordings (pre-lidocaine at
320 µA, black) which allows us to isolate the neural response
component (Figure 1F, purple, bottom left). For the Wiener
filter cancelation method, we first used the artifacts evoked from

highest measured subthreshold current to derive the artifact
prediction filters. Using this filter, we subsequently predicted
(Figure 1F, blue, top) and subtracted the predicted artifacts
from the suprathreshold stimulation recordings (Figure 1F,
blue, bottom). The Wiener filter obtained using subthreshold
stimulation accurately predicts the recorded artifacts during
suprathreshold stimulation and is able to isolate the neural
activity. An advantage of this approach is that, unlike lidocaine
treatment, it does not require a pharmacological treatment to
block neural activity in order to isolate and remove the artifact
signals. Next, we estimated the artifact prediction filters using the
lidocaine treated artifacts from the lowest five current intensities
(10�160 µA) and predicted the artifacts at 320 µA stimulation
(green, top). Since the currents used for the filter estimation and
subsequent prediction are not the same, this test serves as a cross-
validation as well as assessment of linearity. As can be seen in
Figure 1F (green, bottom), subtracting the predicted artifact from
the recorded waveform substantially reduces the artifact size and
successfully isolates the action potential. Next, we carried out
the same procedure but estimated the Wiener filters using the
lowest five current intensities along with the first five trials of
the 320 uA lidocaine session (10�320 µA, 55 trials used, cross-
validated condition, brown) or the entire lidocaine recording
session (10�320 µA, all 60 trials used, red). As exemplified for
each of these cancelation examples, the isolated neural signals
obtained from artifact removal by the Wiener filter method (gray
box, bottom) are nearly identical to the experimentally isolated
neural signals using lidocaine treatment (purple, bottom).

We next quantified the artifact cancelation performance
for each of the above scenarios. The cancelation performance
depended on the data used to estimate the artifact prediction
filter, particularly the number of artifacts and the signal-to-
noise ratio of the artifacts used for filter estimation. The artifact
reduction ratio (ARR, see section “Materials and Methods”)
quantifies the attenuation of the artifact spectrum (in dB)
following cancelation and is shown in Figure 1G for each of
the conditions tested. The lowest ARR (measured between 300
and 3000 Hz) was observed for the subthreshold condition
(22.8 ± 4.4 dB, Mean ± SD; N = 40 fibers) which is as expected
due to fewer artifacts used (N = 10) for the estimation of
prediction filter and the fact that the measured artifacts are
relatively low amplitude and thus susceptible to background
noise (i.e., low signal-to-noise ratio). The ARR improved
to 28.1± 3.5 dB (Mean± SD;N = 40 fibers; cross validated) when
lidocaine treated artifacts from 10 to 160 µA stimulation were
used to estimate the Wiener filter. The ARR further increased to
29.9 ± 4.7 dB (Mean ± SD; N = 40 fibers) which was calculated
using the predicted artifact built from 55 trials of lidocaine data
(10�320 µA) against the remaining 5 trials of 320 µA lidocaine
treated artifacts (also cross-validated). The ARR increased to
39.9 ± 3.3 dB (Mean ± SD; N = 40 fibers) when lidocaine
artifacts from all of 60 trials were used to estimate the artifact
prediction filter (10�320 µA). As a reference control, we used
the recorded artifacts from each trial of the lidocaine treated
signals at 320 µA current stimulation to cancel the artifacts for
all of the remaining trails (e.g., trial 1 artifact was used to predict
trials 2�10; 2 was used to predict 1, 3�10; etc.). This control
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artifact removal serves as a way of assessing the inherent noise
in single trials of the recorded data and also serves as a way of
canceling artifacts without requiring the need to assume linearity
as for the Wiener filter method. The ARR for this procedure
(30.7± 6.8 dB; Mean ± SD; N = 40 fibers) is comparable to
our cross-validated artifact removal performance (29.9 ± 4.7 dB,
Mean ± SD; N = 40 fibers). This suggests that the Wiener filter
artifact removal performance is comparable to the performance
obtained using real recorded artifacts for removal. Thus, the
Wiener filter cancelation performance for this example is largely
limited by the intrinsic noise in the recording.

Collectively, these examples demonstrate that the Wiener
filter cancelation method can achieve exceptional cancelation
performance and is able to generalize by predicting and canceling
artifacts across multiple amplitude conditions.

Bilateral Cochlear Implant Stimulation
The artifact removal procedure was also tested with high-rate
bilateral cochlear implant stimulation in rat while concurrently
recording from a silicon array electrode implanted in the IC.
In the first example, constant amplitude biphasic electrical pulse
sequences were delivered at a pulse rate of 300 Hz synchronously
to both ears, at di�erent interaural delays (ranging between
�160 us to +160 us, 40 us steps; see section “Materials and
Methods”). An example raw recorded waveform from one IC
electrode channel is shown in Figure 2A (black), along with
the predicted artifact waveform (blue). For this example, the
artifact prediction filters were estimated separately for each ITD
condition using half of the response trials from each particular
ITD. The remaining trials at a given ITD are used to test
artifact removal quality (cross-validation). As can be seen for a
recording segment (ITD = 0 ms), the predicted artifact signals
are largely superimposed and are visually indistinguishable from
the recorded artifacts on the neural recordings. Synchronized
action potentials are observed immediately following the delivery
of electrical stimulus current pulses. Upon subtracting the
predicted artifact (blue) from the neural trace (black), the cleaned
neural trace is exceptionally clean with no evident sign of
stimulation artifacts and no evident sign of waveform distortions
(Figures 2A,B, red). Spectral analysis of the recorded signal
prior to panel (Figure 2C, black) and after artifact removal
(Figure 2C, red) confirms a substantial reduction in the artifact
size. The artifact spectrum has harmonic components with
a 300 Hz fundamental (blue) which dominates the original
recording (black). Upon removal of the predicted artifact, there is
a substantial reduction in the artifact components (red). Overall,
the average artifact reduction at harmonics of the stimulation
frequency is 27.2 dB (between 300 and 6000 Hz; averaged across
all ITD conditions; Figure 2D).

We also delivered bilateral electrical stimulation sequences
containing pulse amplitudes that varied dynamically over time
(see “Materials and Methods”) as shown in Figure 3. We
used time-varying amplitudes and di�erent ITDs in order to
determine whether the stimulus current-artifact relationship is
linear and to determine whether the Wiener filter prediction
method can generalize to dynamic stimulation scenarios. For this
example, the pulse train amplitudes were ramped on-and-o�with

a smooth window and the pulses were delivered at multiple ITDs
(between �160 and +160 µs in 40 µs; pulse rate of 300 Hz;
see “Materials and Methods”). The artifact prediction filters were
estimated using all of the ITD and amplitude conditions (1/2 of
the data for estimation and the remaining half for validation;
validation data is shown) using Eqn. 3 and two artifact prediction
filters were derived, one for the left ear and the other for the
right ear (64 filters total; 32 recording channels ⇥ 2 filters /
recording channel). These filters were then used to predict the
artifact waveforms for all of the ITD conditions. As can be
seen from Figure 3A for a representative recording channel, the
predicted artifacts (red) derived with the two-channel Wiener
filter largely overlap the recorded artifacts in the original neural
recordings (black; shown at three di�erent scales). The peak-to-
peak voltage amplitudes of these artifacts are highly correlated
with the delivered peak-to-peak current amplitudes (Figure 3C,
r2 = 0.9981± 0.0001; Mean± SEM) as well as the peak-to-
peak voltages of the predicted artifacts (Figure 3D, r2 =0.9981±
0.0001; Mean± SEM), indicating that the stimulation current and
artifact follow a linear relationship. By subtracting the predicted
artifacts from the original recordings, we were able to isolate
action potentials from a single neuron (Figure 3B). Although
there are still some artifacts visible in the cleaned recording
(Figure 3B, arrows), the artifact size has been dramatically
reduced (cross validated ARR = 25.0 dB, between 300 and
6000 Hz) making isolation of this single neuron possible.

Single- and Multi-Channel Electrical
Stimulation in Auditory Midbrain
We also tested the artifact removal procedure by delivering
random biphasic electrical pulse sequences (Poisson distributed
pulse intervals, 164 µs pulse duration, and 40 µA current
amplitude, Figure 3A) to an auditory midbrain electrode while
neural activity was concurrently recorded from rat auditory
cortex. As can be seen in Figures 3B,C, the extracellular neural
activity (Figure 3B, highpass filtered above 300 Hz) and the
corresponding unfiltered recordings (Figure 3C, unfiltered) both
contain stimulation artifacts that are substantially larger than the
target neural signals.

We numerically estimated a digital single channel Wiener
filter (N = 40 order; 1 stimulation x 1 recording channel) to
predict and subsequently remove the electrical stimulation
artifacts (see “Materials and Methods”). Figures 4B,C show
the raw cortical recordings (top panels), the predicted artifacts
(middle panel) and cleaned neural traces obtained by subtracting
the predicted artifacts from the raw recordings. The artifact
prediction algorithm accurately predicts the timing and
amplitude waveform of the electrical artifacts and, upon
subtraction, the procedure successfully isolates either the
extracellular waveforms or low-frequency local field potentials in
the neural signal. Magnified traces of the extracellular recordings
(marked by ⇤ and ⇤⇤) are presented in Figure 4D to show
the cleaned neural recordings at a higher resolution. Notably,
the algorithm is able to subtract the artifacts that occur in
the vicinity of neural spiking with no visible signs of neural
waveform distortions.
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Performance metrics of the artifact prediction and subtraction
algorithm for this recording is shown in Figure 3E (applied
to the broadband unfiltered signal). The signal-to-noise ratio
of the original recorded waveform varies with frequency but
is generally in the order of �10 to �20 dB. Upon subtracting
the predicted artifact, the cleaned SNR is ⇠20 dB with an
average SNR enhancement ranging between 30 and 45 dB
(average = 39 dB between 300 and 6000 Hz). Thus, there is a
marked reduction in the artifact size and, as seen in the zoomed
neural recordings, there are no visible distortions created by the
subtraction algorithm.

We also successfully used the artifact removal during high
throughput multi-channel electrical stimulation (16 stimulation
channels) of the auditory midbrain while concurrently recording
with a tetrode array (4 channels; see “Materials and Methods”).
In this instance, the Wiener filter was applied in matrix form
(Eqn. 3), which allowed us to predict the artifacts generated by all
of the stimulating channels on each individual neural recording
channel (16 stimulation ⇥ 4 recording channels). Random
pulse sequences (100 pulses/s) were delivered to the 16-channel
auditory midbrain array (Figure 5A; 10 µA pulses delivered
across four randomly chosen electrode channels simultaneously)
while recording from auditory cortex electrodes. For this multi-
stimulation site configuration, we numerically estimated the
digital filters that predict the artifacts generated by each of
the electrical stimulation channel. Filtered and unfiltered neural
recordings, predicted artifacts, and the cleaned neural traces
are depicted for both the filtered (Figure 5B) and unfiltered
(Figure 5C) data. As for the single channel electrical stimulation,
the artifact prediction filter is able to accurately predict the
measured artifacts during multi-channel electrical stimulation,
resulting in minimal distortion of the extracellular signals or
the local field potentials. Prior to removing the artifact, the
SNR for this recording dips to approximately �15 dB at
⇠3 kHz (Figure 5E). Following artifact removal, the SNR hovers
around ⇠20 dB with an overall improvement in the range of
30�45 dB across the frequency range (average artifact reduction
ratio = 33.5 dB from 300 to 6000 Hz; Figure 5E).

Finally, we assessed the linearity of the artifact-current
relationship by delivering multi-channel pulse sequences of time-
varying amplitude (Figure 6). In this example, the amplitude
of random spatio-temporal pulses was modulated over time
between 0.1 and 10 µA as illustrated in panel Figure 6A (11
logarithmic steps; color designates the current amplitude). By
considering pulse sequences that contain multiple concurrent
pulses of time-varying amplitude we are able to assess linearity,
which requires that artifacts scale in amplitude and summate
linearly with the respect to the input current signals. The multi-
channel artifact prediction filters were derived for this example
using the recorded data by applying Eqn. 3 and the predicted
artifacts were then derived. As can be seen for two of the
four recorded channels (Figures 6B,C), the procedure accurately
predicts the recorded artifacts and the resulting cleaned neural
traces show no evident signs of artifacts (Figures 6B,C, bottom;
Figures 6D,E, magnified view). Linearity was assessed by plotting
the recorded versus the predicted peak-to-peak amplitudes of the
artifacts (Figure 6F). As can be seen from the scatter plot there

is clustering along the diagonal. Variability along the diagonal
for each cluster reflects amplitude variability created by the
summation of randomly selected stimulating channels (4 out
of 16 channels are stimulated concurrently). Each stimulating
channel has a distinct impedance (transfer function) and hence a
distinct artifact on the recorded channel with unique amplitude.
Consequently, there are 16! /(12! 4)=1820 possible channel
combinations (4 choose 16) and a total of 10920 unique artifacts
(1820 artifacts/amplitude ⇥ 6 amplitudes). By comparison,
variability orthogonal to the diagonal reflects the variability in
the neural signal of interest, which is present in the original
recorded trace. As can be seen, for very small input currents
(<500 µA) the artifact peak-to-peak amplitudes are smaller
than the detected peak-to-peak amplitudes from artifact free
neural signal segments (0.5 ms window used to detect the
peak-to-peak voltage; Mean peak-to-peak voltage of artifact
free segments = 100 µV, dotted blue line Figure 6D). Thus,
for such small stimulation currents, the detected peak-to-peak
amplitudes within the artifact measurement window are actually
corrupted by the peak-to-peak amplitude of the neural signal.
This neural signal variability represents measurement noise and
creates a slight curvature in the scatter plot for currents below
⇠ 500 µA. Despite this, the accounted artifact variance with a
linear model was exceptionally high (r2 =0.9981± 0.0001,Mean±

SEM) suggesting that the artifacts follow a linear relationship
with the current input.

Overall, these examples demonstrate that a multi-channel
linear prediction filter is able to account for the recorded
artifacts generated via spatio-temporal summation frommultiple
dynamically changing current inputs.

The Impact of Data Length on Artifact
Removal Quality
As seen from di�erent examples, there are some discrepancies
in the artifact reduction ratio between the di�erent recordings
which varied between ⇠25 and 40 dB for the di�erent examples
tested. This discrepancy is in part accounted by the quality of the
estimated artifact prediction filters, which is expected to depend
on the length of the recorded data and the number of pulses
delivered. For instance, the artifact prediction filter obtained
for the subthreshold sciatic nerve stimulation were derived
from slow rate pulse sequences (0.5 pulses/s) of relatively short
duration (10 s total) and thus relatively few artifact measurements
(10 pulses total), which likely resulted in the low ARR (⇠20 dB).
This contrast the auditory midbrain and cortical recordings
reported in Figures 4, 5, where longer sequences were used
and pulses were delivered at a much higher rate (Figure 2, 300
pulses/s; Figure 3, 16 pulses/s; Figure 4, 100 pulses/s), resulting
in a much higher number of artifact measurements for the filter
estimation and consequently a higher ARR (⇠30�40 dB). The
impact of the estimation data length (or equivalently number of
artifact pulses used to estimate the filters) on the quality of the
algorithm is shown in Figure 7 for the auditory cortex recording
of Figure 5. The recorded data was portioned into segments
of a fixed duration (2.7�172 s; corresponding to ⇠270�17,200
artifacts) and the filters were re-estimated using the partitioned
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FIGURE 7 | Dependence of artifact reduction quality on data length. The
artifact reduction ratio (ARR, measured between 300 and 6000 Hz) is shown
as a function of the data length (varied between 2.7 and 171.8 s in octave
steps) used to estimate the Wiener prediction filter for the example of
Figure 5. The cross-validated ARR increases with increasing data length with
a net improvement of ⇠2.5 dB per doubling of the data length.

data followed by the artifact prediction and removal procedure.
As expected, the ARR improves with increasing estimation data
length, or equivalently the number of artifacts used to estimate
the filters, with an average improvement of ⇠2.5 dB per doubling
of the data length.

DISCUSSION

We have developed an optimal multi-channel artifact removal
procedure that accurately predicts electrical stimulation artifacts
using both the stimulating current signal and the estimated
linear transfer function between each stimulating and neural
recording electrode. The procedure is flexible and can be
implemented in a wide range of applications and recording
modalities, including high rate and multi-channel electrical
stimulation. The procedure was validated in three di�erent neural
stimulation settings: single-channel stimulation of sciatic nerve
axons, bilateral (two-channel) cochlear implant stimulation and
multi-channel stimulation of the auditory midbrain, where we
demonstrate a net reduction in the artifact size of 25�40 dB.

Compared with other artifact removal methods, the novelty
of our approach is two-fold. First, it requires establishing linear
filter coe�cients that account for the transfer functions of each
stimulus-recording interface, a process that needs only a modest
amount of recording data (10�100 s). An added benefit is
that the filter coe�cients can be easily updated as needed to
account for the temporal drifting of the stimulus-recording
coupling, thus potentially allowing for adaptive artifact removal
over a long recording periods (e.g., days to months). Second,
the procedure utilizes the information of the stimulus signals
that are the source of artifact and readily available in most

instances, but are neglected by conventional artifact removal
procedures. This allows our method to remove artifacts in neural
recordings evoked by arbitrary stimulus waveforms (e.g., variable
amplitudes, multiple channels etc.), which is not possible with
conventional artifact removal algorithms.

Our novel artifact removal procedure capitalizes on passive
linear electrical coupling of stimulus signals through tissue
and air (resistive, capacitive, and/or inductive) that gives rise
to the artifacts in the records (Rivnay et al., 2017). Artifacts,
in this regard, correspond to electrical signals that are not
neural in origin and are directly dependent on the presence
of the recording electrodes and their electrical characteristics.
We confirmed the underlying linearity assumption by delivering
current pulses of di�erent amplitudes and demonstrating that
the artifact peak-to-peak amplitudes exhibit an exceptionally
high correlation with the delivered current amplitude and/or
the predicted artifacts (Figures 1D,E, 3C,D, 6F; r2 >0.998).
Furthermore, the multi-site stimulation experiments, which
successfully removed the electrical artifacts using multi-channel
linear Wiener filters (Figures 3, 5, 6), suggest that electrical
artifacts summate linearly thus further supporting the linearity
assumption. Several prior studies have demonstrated that
electrical stimulation artifacts can follow complex and non-linear
relationship with the input currents (Montgomery and Jr, 2006;
Mena et al., 2017), which would invalidate the use of a linear
predictive filter approach as used here. One plausible explanation
for this di�erence is that these prior studies carried out neural
recordings within relatively close proximity to the stimulating
electrodes. In such instances, it is highly probable that short-
latency non-linear neural activity (e.g., sub-threshold pre- or
post- synaptic activity) and other extracellular field potentials
interfere and summate with the electrical artifacts, which likewise
exhibit short latency. Such short-latency neural signals could be
interpreted as artifacts even though technically they correspond
to propagating activity through the neural circuitry. Although
such a scenario is not evident for the recordings performed here,
such short-latency neural activity could make it di�cult to detect
specific types of neural activity (e.g., action potentials) and could
potentially limit the ability to accurately estimate the artifact
prediction filters. Stimulation artifacts can also potentially exhibit
a non-linear relationship if the artifact amplitudes saturate the
recording amplifiers or if they exceed the voltage limits of the
digital-to-analog converter. This in itself is not a limitation of
our technique and could be circumvented through the use of
appropriately selected neural recording hardware.

As demonstrated, the Wiener filter approach can accurately
predict and remove recording artifacts in a variety of stimulation
settings including single- and multi-channel stimulation, high
rate stimulation, as well as stimulation with time-varying
amplitude and/or shape. Conventional procedures based on
template subtraction are often not able to eliminate artifacts in
these settings because finding a template that matches the shape
of all artifact waveforms is not always possible (Wichmann, 2000;
Hashimoto et al., 2002; Qian et al., 2017). This is especially
true when the electrical stimulation currents consist of variable
amplitudes and shapes or when multiple current pulses from a
single ormultiple channels summate over time. However, we note
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that for simple stimulation scenarios with temporally isolated
non-overlapping artifacts, template cancelation should produce
similar results as our method because templates are derived using
event triggered averaging, which for such scenarios is equivalent
to generating a Wiener filter (de Boer and Kuyper, 1968). Other
established artifact removal procedures utilizing independent
component analysis (Makeig et al., 1996; Vigário, 1997; Gilley
et al., 2006; LeVan et al., 2006; Debener et al., 2008; Rogasch
et al., 2014) assume independence between neural activity and
artifact sources, which is not always satisfied at suprathreshold
stimulation condition that evokes synchronized neural activity.
Thus, some of the estimated artifact components can contain
both neural activity and artifacts, which can distort and eliminate
relevant neural signals. Recently, a statistical model-based artifact
cancelation procedure was developed to successfully remove
artifacts from multiple sources to enhance spike sorting of
recorded neural data (Mena et al., 2017). This statistical model-
based approach is advantageous when the current inputs are not
known, however, the procedure assumes that artifacts on a given
channel are relatively stable and the procedure is not designed to
account for dynamically varying artifacts.

By numerically estimating the linear transformation between
each stimulation and recording channel and accounting for the
input current waveforms, our procedure is able to generalize
and accurately predict artifacts that dynamically vary over time.
Linear models have been previously applied successfully to
predict and remove artifacts from cortical recordings (Trebaul
et al., 2016). The linear removal procedure assumed that the
artifact transfer function can be accurately described by a first-
order capacitive and resistive circuit. Our method extends on
such an approach by providing a more general framework that
is applicable across vastly more complex stimulation scenarios.
First, although the use of a circuit based model provides
a first order approximation of the artifact transformation, it
cannot account for multiple signal transmission paths that
may be present, such as simultaneous conduction through the
neural tissue and through air medium (inductive coupling).
The use of Wiener filters allows us to empirically measure the
transfer function of each stimulating-recording pair which can
theoretically account for such scenarios. Furthermore, as shown
for various examples, our procedures is also able to generalize
across a variety of complex stimulation conditions including
multiple inputs, multiple outputs, variable current amplitudes,
and multiple stimulation delays such as for the cochlear implant
and auditory midbrain stimulation examples. The flexibility
of our approach is exemplified in the dynamic multi-channel
stimulation example (Figure 6), where randomly selected inputs
of di�erent amplitudes were activated creating a total of 10920
possible distinct artifacts. Despite this, the linear Wiener filter
accurately predicts and cancels the incoming artifacts even for
this complex scenario. As far as we are aware of, there are
presently no artifact cancelation procedures available that can
handle this high variability since all the available procedures
require relatively stable artifacts over time.

The artifact reduction ratio varied between ⇠25 and 40 dB
for di�erent recording modalities tested. Di�erences between
the di�erent modalities are due to the available data used for

deriving the filter coe�cients and the intrinsic SNR of the
data itself. As demonstrated for the sciatic nerve recordings,
the quality of the artifact removal is limited both by the data
length and number of artifacts in the training data. The ARR
for the sciatic nerve recoding is ⇠22 dB when the filters are
estimated using subthreshold activity which only contains 10
artifacts and the artifacts themselves are relatively small in
relationship to the neural activity (low SNR for estimating
the artifact). Prediction quality and hence the artifact removal
e�ectiveness improves dramatically when artifacts from higher
current amplitudes are used to estimate the filter coe�cients.
This improvement occurs, in part, because substantially more
artifacts are used to estimate the filter coe�cients (increase in
data size) and because the measured artifacts for high current
amplitudes have a higher SNR. Similar results are observed for
the multi-site stimulation scenario, where the quality of the
artifact removal improves upon adding more data to the filter
estimates (Figure 7). For this scenario, we note that the increase
of SNR for every doubling of the data is ⇠2.5 dB, which is close
to the theoretically expected value under the assumption that
measurement noise is independent (Marmarelis and Marmarelis,
1978) (3 dB improvement per doubling of the data length;
i.e., estimation error variance decreases inversely proportional
to data length).

Because of the computational e�ciency of the linear Wiener
filter algorithm, the proposed artifact removal procedure has
potential applications for real-time assessment of neural function
and real-time feedback control (Wilson et al., 1991; Schachter
and Saper, 1998; Dhillon andHorch, 2005; Lebedev and Nicolelis,
2006; O’Doherty et al., 2011; Mc Laughlin et al., 2012; Hartmann
et al., 2014). On the one hand, the artifact removal filters can
be estimated with a dedicated segment of recorded data. During
such a period artifacts cannot be removed and the acquired
data is strictly used for training the artifact removal filters.
The speed of the subsequent artifact removal will be limited
by the recording hardware delays which can be less than a few
milliseconds with appropriately selected hardware and which
are su�ciently short for most feedback applications. Alternately,
Wiener filter coe�cients can be estimated and implemented
iteratively using solutions that update the coe�cients as needed
(Hayes, 1996), however, this approach would require additional
computing resources to iteratively estimate the filters with
the incoming data. Such an adaptive approach can potentially
account for the drifting of the stimulus-recording that will be
investigated in a future study. In theory, it allows the filter
to be updated and optimized at any time by introducing new
training data or by continuously using the recorded data itself
to estimate the filter coe�cients in real-time. Such iterative
implementations would also allow for quantitative estimation
of the stimulus-recording conditions over time, which may
exhibit non-stationary behaviors for chronic recordings (e.g., due
to changing electrode impedance over days or movement of
electrodes, etc.).

Overall, the proposed Wiener filter artifact prediction and
removal procedure has the potential for a broad range of
applications requiring concurrent neural stimulation and neural
recording from multiple channels. Wiener filter estimation and
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prediction approaches have a long history and are well established
(Wiener, 1949; Hayes, 1996). They are computationally e�cient
requiring little data to estimate the filter coe�cients (10�100 s
to achieve 25�40 dB ARR in our examples) and do not require
specialized hardware. Hence, the approach can be easily adapted
for real-time applications and applications requiring real-time
assessment of neural function and behavior.
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