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The perception of sound textures, a class of natural sounds defined
by statistical sound structure such as fire, wind, and rain, has been
proposed to arise through the integration of time-averaged sum-
mary statistics. Where and how the auditory system might encode
these summary statistics to create internal representations of
these stationary sounds, however, is unknown. Here, using natu-
ral textures and synthetic variants with reduced statistics, we
show that summary statistics modulate the correlations between
frequency organized neuron ensembles in the awake rabbit infe-
rior colliculus (IC). These neural ensemble correlation statistics cap-
ture high-order sound structure and allow for accurate neural
decoding in a single trial recognition task with evidence accumu-
lation times approaching 1 s. In contrast, the average activity
across the neural ensemble (neural spectrum) provides a fast (tens
of milliseconds) and salient signal that contributes primarily to
texture discrimination. Intriguingly, perceptual studies in human
listeners reveal analogous trends: the sound spectrum is inte-
grated quickly and serves as a salient discrimination cue while
high-order sound statistics are integrated slowly and contribute
substantially more toward recognition. The findings suggest sta-
tistical sound cues such as the sound spectrum and correlation
structure are represented by distinct response statistics in auditory
midbrain ensembles, and that these neural response statistics may
have dissociable roles and time scales for the recognition and dis-
crimination of natural sounds.

natural sounds | auditory textures | sound statistics | neural coding |
perception

What makes a sound natural, and what are the neural codes
that support recognition and discrimination of real-world

natural sounds? Although it is known that the early auditory
system decomposes sounds along fundamental acoustic dimen-
sions such as intensity and frequency, the higher-level neural
computations that mediate natural sound recognition are poorly
understood. This general lack of understanding is in part at-
tributed to the structural complexity of natural sounds, which is
difficult to study with traditional auditory test stimuli, such as
tones, noise, or modulated sequences. Such stimuli can reveal
details of the neural representation for relatively low-level
acoustic cues, yet they don’t capture the rich and diverse statis-
tical structure of natural sounds. Thus, they cannot reveal many
of the computations associated with higher-level sound proper-
ties that facilitate auditory tasks such as natural sound recogni-
tion or discrimination. A class of stationary natural sounds
termed textures, such as the random sounds emanating from a
running stream, a crowded restaurant, or a chorus of birds, have
been proposed as alternative natural stimuli which allow for
manipulating high-level acoustic structure (1). Texture sounds
are composed of spatially and temporally distributed acoustic
elements that are collectively perceived as a single source and

are defined by their statistical features. Identification of these
natural sounds has been proposed to be mediated through the
integration of time-averaged summary statistics, which account
for high-level structures such as the sparsity and time-frequency
correlation structure found in many natural sounds (1–3). Using
a generative model of the auditory system to measure summary
statistics from natural texture sounds, it is possible to synthesize
highly realistic synthetic auditory textures (1). This suggests that
high-order statistical cues are perceptually salient and that the
brain might extract these statistical features to build internal
representations of sounds.
Although neural activity throughout the auditory pathway is

sensitive to a variety of statistical cues such as the sound contrast,
modulation power spectrum, and correlation structure (4–12),
how sound summary statistics contribute toward basic auditory
tasks such as recognition and discrimination of sounds is poorly
understood. Furthermore, it is unclear where along the auditory
pathway summary statistics are represented and how they are
reflected in neural activity. The inferior colliculus (IC) is one
candidate midlevel structure for representing such summary
statistics. As the principal midbrain auditory nucleus, the IC
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receives highly convergent brainstem inputs with varied sound
selectivities. Neurons in the IC are selective over most of the
perceptually relevant range of sound modulations and neural
activity is strongly driven by multiple high-order sound statistics
(4–7, 10). In previous work, we showed the correlation statistics
of natural sounds are highly informative about stimulus identity
and they appear to be represented in the correlation statistics of
auditory midbrain neuron ensembles (4). Correlations between
neurons have also been proposed as mechanisms for pitch
identification (13) and sound localization (14). This broadly
supports the hypotheses that high-order sound statistics are
reflected in the response statistics of neural ensembles and that
these neural response statistics could potentially subserve basic
auditory tasks.
Here using natural and synthetic texture sounds, we test the

hypothesis that statistical structure in natural texture sounds
modulates the response statistics of neural ensembles in the IC
of unanesthetized rabbits, and that distinct neural response sta-
tistics have the potential to contribute toward sound recognition
and discrimination behaviors. By comparing the performance of
neural decoders with human texture perception, we find that

place rate representation of sounds (neural spectrum) accumu-
lates evidence about the sounds on relatively fast time scales
(tens of milliseconds) exhibiting decoding trends that mirror
those seen for human texture discrimination. High-order statis-
tical sound cues, by comparison, are reflected in the correlation
statistics of neural ensembles, which require substantially longer
evidence accumulation times (>500 ms) and follow trends that
mirror those measured for human texture recognition. Collec-
tively, the findings suggest that spectrum cues and accompanying
place rate representation (neural spectrum) may contribute
surprisingly little toward the recognition of auditory textures.
Instead, high-order statistical sound structure is reflected in the
distributed patterns of correlated activity across IC neural en-
sembles and such neural response structure has the potential to
contribute toward the recognition of natural auditory textures.

Results
Natural Sound Texture Statistics Modulate Neural Correlation but Not
Neural Spectrum Statistics. To determine how natural sound sta-
tistics influence the response statistics of neural ensembles in IC,
we first characterized several key statistics from an auditory
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Fig. 1. Sound summary statistics measured from five natural sound textures. (A) Cochlear model spectrograms. Color scale indicates the time-varying en-
velopes decomposed from frequency-organized cochlear filters. (B) Cochlear channel power and envelope marginal moments (mean and variance/mean2. (C)
Modulation power spectrum. The power of each modulation band is normalized by the variance of the corresponding cochlear envelope and plotted as a
function of modulation frequency (Hz). (D) Cochlear cross-band envelope correlations.
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model representation for five natural sound recordings. These
include sounds from a crackling fire, bird chorus, outdoor crowd,
running water, and a rattling snake (SI Appendix and Sounds
S1–S5). We then used texture synthesis (1) to generate synthetic
sound variants with perturbed low- and high-order statistics
(Methods). The selected sound textures have distinct spectral and
temporal properties, and they each show diverse structures in the
measured statistics (Fig. 1). The synthetic sound variants were
generated by sequentially imposing the cochlear channel power
statistics (i.e., power spectrum, Spec condition; Fig. 1 A and B, SI
Appendix, and Sounds S6–S10), cochlear channel marginal sta-
tistics (+Mar condition; envelope mean, variance, and skew;
Fig. 1B, SI Appendix, and Sounds S11–S15), the modulation
power of each cochlear channel (+MPS condition; Fig. 1C, SI
Appendix, and Sounds S16–S20), and the correlation structure
between cochlear and modulation channels (+Corr condition;
Fig. 1D, SI Appendix, and Sounds S21–S25). As illustrated, there
are marked differences in both low- and high-order statistical
cues across the different natural sounds. For instance, the crowd
and water sounds have relatively similar power spectra (Fig. 1 A
and B) and modulation power (Fig. 1C), and the correlations
between frequency channels are weak, as reflected in the diag-
onalized correlation matrix (Fig. 1D). The rattling snake sound,
by comparison, has a power spectrum that is biased toward
higher frequencies (Fig. 1 A and B). Furthermore, the cochlear
channels are highly correlated across frequencies (Fig. 1D) with
modulation power concentrated at about 20 Hz (Fig. 1C), which
reflects the coherent periodicity of the broadband rattling sound.
Collectively, the differences in statistical structure for these
natural textures could differentially drive neural responses in IC
and may contribute toward recognition or discrimination of
these sounds.
Though human listeners are perceptually sensitive to statistical

cues in natural sound textures, there is little evidence on how
neural responses to these statistics may contribute to texture
perception. Here, we used the synthetic and original texture
sounds as stimuli to determine whether sound statistics modulate
the response statistics of neural ensembles in the unanesthetized
rabbit IC (n = 4 animals, 29 penetration sites were included for
analysis). Fig. 2 demonstrates the neural response statistics
measured from a representative penetration site for a synthetic
bird sound (synthesized variant that includes all of the statistics)
using an analog representation of multiunit activity (aMUA)
(Methods). From the response neurogram (Fig. 2B, average ac-
tivity across response trials) we estimated the stimulus-driven
neural correlation statistics by correlating the recorded aMUA
signals from all electrode channel pairs across independent re-
sponse trials (Methods). Fig. 2 F and G illustrate different de-
grees of correlated neural activity from example recording
channel pairs in response to the synthetic bird chorus texture
sound. The neural responses from channels 7 and 8, for instance,
show a significantly correlated temporal signature (Fig. 2F; P <
0.01, Fisher z-transform test) which is reflected in the pointwise
scatterplot and ultimately in the measured correlation coefficient
(r= 0.89) and stimulus driven correlation (c = 0.286). Similarly,
channel 7 shows a significant although weaker correlation with
channels 11 (r= 0.33, c = 0.11) and 16 (r= 0.16, c = 0.05). Since
our recordings from multiple spatially separated electrode
channels follow the tonotopic ordering of the IC (Fig. 2A, fre-
quency response areas cover a frequency range of approximate
0.5 to 10 kHz for this penetration site), we refer to the cross-
channel correlations at zero lag as spectral correlations (Fig. 2C).
Conceptually, this metric captures the degree to which distinct
neural recording channels are temporally synchronous with one
another (4, 15), analogous to the model-based channel correla-
tion (16) (Fig. 1D). We also estimated the neural response cor-
relations across time for each neural recording channel which we
refer to as the temporal correlations (Fig. 2D and Methods). As

previously shown, the temporal correlations capture the stimulus-
driven temporal response pattern for each individual channel
(4) and are closely related to the sound modulation power
spectrum (MPS, related via a Fourier transform) (1). Thus,
although the temporal correlations are computed directly in the
time domain, they are mathematically equivalent to the power
spectrum of the neural responses, and thus can be thought of as
a neural equivalent of the MPS. Both the spectral and temporal
correlations shown here are “stimulus”-driven correlations, where
“noise” correlations on single trials have been removed by trial
shuffling (Methods). Finally, for each recording location, we also
measured the neural spectrum statistic assessed by computing the
average response amplitude from each electrode channel over time
and across response trials (Fig. 2E and Methods). This neural re-
sponse statistic closely resembles the model-based sound spectrum
which is widely used to measure the frequency composition
of sounds.
If higher-order sound statistics provide meaningful cues for

identifying sounds, neural responses should reflect and vary
systematically with statistical variation of natural sounds. As seen
in the example of Fig. 1, high-order natural sound statistics vary
markedly for each natural texture, which could provide useful
information about the identity of the sound. The measured
neural correlations and neural spectrum vary markedly across
the five texture sounds and across synthetic variants with dif-
ferent statistics as seen for the penetration site of Fig. 2 (Fig. 3;
additional examples in SI Appendix, Fig. S1). In general, spectral
(Fig. 3A) and temporal (Fig. 3B) correlations to different natural
sound textures are highly diverse and reflect stimulus-dependent
structures. For example, in the synthetic fire sound containing
the full set of statistics (Fig. 3 column of +Corr condition),
spectral correlations are extensive with the envelopes of both
nearby and distant electrode channels showing correlated activ-
ity. By comparison, the neural correlations to the crowd sound
are localized to neighboring channels with relatively low fre-
quencies, and the response to the snake sound exhibits strong
correlated activity between channels with best frequencies above
∼1 kHz. Temporal correlations also show distinct, stimulus-
dependent patterns. The temporal correlations of the bird
sound, for instance, show a broad/slow component at high fre-
quencies, while the correlations of fire, crowd, and water sounds
are narrow/fast and show little frequency selectivity. In contrast
to all four other sounds, the snake sound exhibits periodic cor-
relations for high frequency channels that reflect the periodic
structure of snake rattling at ∼20 Hz (∼50-ms period; Fig. 3 B,
Bottom). The neural spectra (Fig. 3C) show a somewhat lower
amount of diversity across sounds. The fire, bird, and snake
sounds induce the strongest activity for high-frequency channels,
while crowd and water more strongly drive low-frequency channels.
Thus, neural response correlations reflect statistical structure that
can potentially distinguish each of the natural texture sounds.
In addition to the differences in response statistics observed

for each texture sound, neural correlation statistics in the IC also
varied systematically with the sound statistics that were included
in the perturbed texture variants. Adding sound statistics to the
synthetic variants increases the strength of spectral and temporal
correlations between neural responses (Fig. 3 A and B). More-
over, the patterns of neural correlations change and become
increasingly similar to the original sound responses as statistics
are added (Fig. 3 A and B). The same is not true for the neural
spectrum, which is largely unaffected by adding high-order sta-
tistics to the synthetic sound variants and consistently resembles
the response to the original sound (Fig. 3C). To quantify this
effect, we calculated two indices that compare the neural cor-
relations and spectrum for the reduced and original sound var-
iants: a cross-validated similarity index (SI) and strength ratio
(SR) (Methods). In the example penetration site, the SI and SR
of the spectral (Fig. 3D) and temporal (Fig. 3E) correlations for
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fire, bird, and snake sounds increase as more statistics are in-
cluded in the sound variants. Thus, the correlation strength in-
creases upon adding high-order statistics while the correlation
pattern converges on that of the original sound. By comparison,
for crowd and water sounds, the neural correlations do not
change substantially with the included sound statistics, indicating
that the neural correlation statistics are similar to the response of
original sounds even when only the sound spectrum is imposed.
Such lack of sequential change for these sounds reflects the fact
that the crowd and water sounds are both well characterized by
relatively low-level acoustic structure. They have minimal acous-
tic correlations and are relatively random over time (Fig. 1). By
comparison, although the neural spectrum shows a fair amount
of diversity across sound textures, it is very stable regardless of
which statistics are included in the synthetic variants (Fig. 3F).
Consequently, the measured SI and SR of the neural spectrum
for this recording site are near constant for all five sounds.
Similar trends were observed across the neural population

indicating that high-order statistics of the sounds strongly influ-
ence the neural ensemble activity (Fig. 3 G–I; for individual

sounds, see SI Appendix, Fig. S2). Neural correlations changed
systematically and converge on that of the original sound upon
adding sound statistics, whereas the neural spectrum is relatively
stable and resembles the original sound condition regardless of
which statistics are included in the reduced sounds (Fig. 3 G–I).
Averaged across all five sounds and penetration sites, the SI of
spectral correlations shows a significant increase from 0.26 ±
0.26 (mean ± SD), when only the sound spectrum is included
(i.e., Spec condition), to 0.78 ± 0.14, when the marginals, mod-
ulation power, and correlations are included (i.e., +Corr con-
dition) in the synthetic sound stimuli (P < 0.05, paired t test
comparing each condition against Spec; corrected for multiple
comparisons, applied to this and all subsequent t tests). Similarly,
the SI of temporal correlations increases systematically
from −0.04 ± 0.11 to 0.58 ± 0.09 (P < 0.05, paired t test). The SR
of the neural correlations statistics also systematically increases
upon adding statistics to the synthetic variants (spectral = 0.55 ±
0.10 to 0.97 ± 0.13; temporal = 0.50 ± 0.16 to 0.90 ± 0.12; P <
0.05, paired t test). These results differ from those for the neural
spectrum, which exhibits only a slight increase in SI (from 0.84 ± 0.10
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for Spec to 0.94 ± 0.06 for +Corr; P < 0.05, paired t test) and
where the SR remains near constant as statistics are added (∼1,
all SD < 0.02; not significant [N.S.], paired t test). Overall, these
findings demonstrate that neural correlations in IC become
stronger and their pattern converges on that of the original
sound textures upon adding high-order statistics while the neural
spectrum is substantially less variable and is largely unaffected by
high-order sound statistics.

The Contribution of Neural Response Correlation and Spectrum
Statistics to Recognition and Discrimination of Texture Sounds.
Given that the neural response pattern and strength is strongly
modulated by the high-order texture statistics, we next explored
how the response spectrum- and correlation-based neural codes
can contribute to recognition and discrimination of sound tex-
tures. We used a single-trial neural decoder (Methods) to de-
termine whether the neural correlations and spectrum in IC
could allow sound textures to be identified and discriminated.
Each of the classifiers was specifically designed to take into ac-
count task-specific structure and the information that would be
available to a listener during a texture recognition or discrimi-
nation task (Methods). In the recognition task, a naïve Bayes
classifier was trained with the neural spectrums or correlations of
the five original sounds (obtained with a 1,000-ms window). The
classifier was required to identify the delivered sound using
single-response trials of a variable duration (62.5 to 1,000 ms in
half-octave steps). Fig. 4A shows the cross-validated (half of the
data were used for training the model and the other half for
validation; Methods) classification performance for the example
penetration site shown previously (Fig. 3) when the stimuli were
synthetic sounds that included all statistics (+Corr condition,
applied to Fig. 4 A–D; results for all other statistic conditions are
shown in SI Appendix, Fig. S3). At short durations, the perfor-
mance of neural correlation-based classifiers ranges from ∼0 to
90% for different sounds, although the average performance is
above chance (32.2%, 29.2%, and 32.2% for spectrotemporal,
spectral, and temporal, respectively, at 62.5 ms; chance is 20%).
For most sounds, classifier performance increases with sound
duration. An exception to this, was the temporal classifier perfor-
mance for the snake sound, which was below chance. This mis-
classification was likely due to the fact that the rattling frequency
between the first and second half of the data were different (∼15 vs.
25 Hz) which affected the cross-validation results (Methods). In
contrast to the correlation-based classifiers, where performance
tends to improve with sound duration, the neural spectrum classi-
fier shows relatively stable and high performance even for short
sound durations (67.0% at 62.5 ms).
Similar results were observed across all penetration sites

(Fig. 4C). The performance of all classifiers is above chance and
increases with sound duration. Among the correlation-based
classifiers, the spectrotemporal classifier shows the highest per-
formance (increase from 34.6 to 79.3% with duration), followed
by the spectral (30.0 to 69.7%) and the temporal (31.5 to 67.3%)
classifiers. In contrast, the neural spectrum classifier has more
stable and higher performance (52.8 to 83.2%) that does not
improve substantially with sound duration (a ∼30% increase
compared to 40 to 45% for the correlation-based classifiers).
Thus, spectrum- and correlation-based neural codes can both
contribute to texture recognition, and performance tends to
improve with the sound duration.
Although texture recognition performance of the synthetic

texture (+Corr condition) depends strongly on the sound dura-
tion and neural response statistics measured, texture discrimi-
nation was less dependent on both. In the texture discrimination
task, the naïve Bayes classifier was trained using the responses
for sound pairs of identical duration (Methods). For the example
penetration site of Fig. 4B, most sounds are easily discriminated
regardless of the sound duration used. One exception is for the

water sound where, for this example, the temporal correlation-
based classifier performance tends to decrease with duration, al-
though it remains above chance (50%). Averaged across all sounds
and all penetration sites (Fig. 4D), performance is high and above
chance for all classifiers when the sound is 62.5 ms (spectrotemporal
70.0%, spectral 68.1%, temporal 60.1%, neural spectrum 88.0%)
and shows slight increases with sound duration. The performance
reaches and exceeds 90% with longer durations.
To further evaluate whether and the degree to which the

sound spectrum itself may be driving correlated neural activity
that might contribute toward the recognition and discrimination
of textures, we repeated the experiments in n = 11 recording sites
(from two animals) using the original sound textures and texture
variants with an equalized 1/f power spectrum (4) (SI Appendix
and Sounds S26–S30). This manipulation guarantees that aver-
age spectrum cues are the same across sounds while preserving
many of the high-order sound cues in the original sounds. De-
spite the fact that these sounds have identical spectrum, the
sounds are perceptually distinct and are uniquely perceived as
the original sound. Here, the neural correlations of the equalized
sounds are distinct from each other and remarkably similar to
the original sounds (Fig. 5A, spectral; Fig. 5B, temporal). On the
other hand, while the neural spectra of the original sounds are
quite distinct, the neural spectra for the equalized sounds are
much more similar to each other (Fig. 5C). Thus, although the
neural spectrum is strongly affected by the sound spectrum, high-
order structure in these equalized sounds appears to be largely
preserved and encoded by the neural correlations within IC
ensembles.
How does the removal of the sound spectrum affect classification

performance? Fig. 5D shows the population average neural iden-
tification and discrimination for the spectrum equalized sounds.
While the neural spectrum contributes substantially to recognition
of both the synthetic and original sounds (Fig. 4C, far Right; SI
Appendix, Fig. S3A, original [Ori], far Right) neural spectrum
identification performance drops to near chance (from 90.1 to
26.6% at 1 s) for the spectrum equalized sounds (Fig. 5D, red).
Recognition performance for the neural correlation also drops
when compared to the original sounds (from 84.9 to 58.5% at 1 s)
but still retains information for the spectrum equalized sounds that
allows the classifier to perform well above chance (Fig. 5D, blue).
Similar results are also shown for the discrimination task. The
neural correlation classifier performance is only slightly reduced
compared to the original sound (93.6% vs. 84.7% at 1 s), which is
expected given that correlations are largely preserved for these
equalized sounds. However, although the neural spectra of the
equalized sounds are quite similar, there are still significant dif-
ferences that enable the neural spectrum classifier to discriminate
among the five sounds beyond chance (original condition = 96.0%;
spectrum equalized = 79.3%). These findings suggest that high-
order sound structure from the original sounds is retained in the
neural correlations despite equalization and that this structure can
contribute to neural recognition and discrimination independently
of the cues in the sound spectrum.
Next, we explored how the addition of high-order sound statistics

affects how well sound textures can be identified or discriminated
from neural responses. The neural classifier performance at 1-s
duration is shown in Fig. 6A as a function of the sound statistics
that were included during the synthesis. For the recognition task,
the performance of all classifiers increases substantially upon add-
ing sound statistics (for spectral classifier and temporal classifier,
see SI Appendix, Fig. S4). The spectrotemporal classifier shows the
highest performance among the correlation-based classifiers, in-
creasing from 40.0 ± 11.6% for the Spec condition to 83.0 ± 9.4%
for Ori. This is followed by the spectral correlation-based classifier
(39.2 ± 11.8% to 78.1 ± 10.2%) and the temporal correlation-based
classifier (25.2 ± 6.0% to 63.6 ± 11.8%), which shows the lowest
performance on average. In contrast to the correlation classifiers,
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the neural spectrum classifier exhibits very high performance that is
much less dependent on the included statistics. The recognition
accuracy is 65.1 ± 14.3% for the Spec condition and improves to
87.8 ± 8.4% for Ori condition. Note that the spectrotemporal and
neural spectrum classifiers have roughly similar high performance
(about 80%) for the synthetic sounds with correlation statistics and
original sounds. However, in the discrimination task, the perfor-
mance doesn’t improve substantially with sound statistics for the
spectrotemporal, spectral, and neural spectrum classifiers, and im-
proves only slightly (∼18%) for the temporal classifier. Together,
these findings suggest that correlation- and spectrum-based cues
can contribute differently to neural recognition and discrimination
of texture sounds.
The evidence accumulation times for the neural correlation

and spectrum decoders differed significantly as a function of task
(recognition vs. discrimination), the statistics that were included
in the synthetic texture stimuli, and the neural response statistics
used for classification (neural correlation vs. spectrum) (P <
0.001, m-way ANOVA). Fig. 6B shows the time constant, defined
as the time it takes to reach 90% of the corresponding maximum
classifier performance, as a function of sound statistics. First, for
both the neural spectrum and combined spectrotemporal cor-
relation classifiers, time constants for the discrimination task are
shorter than the recognition task and they exhibit different be-
haviors as a function of added sound statistics. In the recognition
task, the time constant increases systematically with additional
sound statistics (change between conditions Spec to Ori: 65.4%
increase, from 355 ± 195 ms to 587 ± 135 ms for correlation;
53.2% increase, from 222 ± 143 ms to 340 ± 121 ms for neural
spectrum). This systematic increase in the time constant is partly
attributed to performance improvement with changing statistic,
which is most prominent for the long sound durations (SI Ap-
pendix, Fig. S3). For short duration sounds, there is only a
modest improvement in the classifier recognition performance,
indicating that the classifier does not effectively make use of the
added statistics for very short duration sounds. Regardless of
task, it is worthwhile noting that the time constant of the neural
spectrum classifier is ∼200 to 300 ms faster than that of the

neural spectrotemporal correlation classifiers (also true for
spectral and temporal correlations; SI Appendix, Fig. S4). For the
+Corr sound condition, for instance, the time constant is 581 ±
121 ms for the neural correlation and 350 ± 127 ms for the
neural spectrum classifier. We also find a similar difference in
the discrimination task, where the time constant is 235 ± 109 ms
for the neural correlation classifier and 68 ± 14 ms for the neural
spectrum classifier for the +Corr sound condition. However, for
the discrimination task, the time constant is relatively stable and
does not change substantially with sound statistics (change be-
tween conditions Spec to Ori: 28.8% decrease from 281 ± 101 ms
to 200 ± 85 ms for neural correlation; 7.6% from 66 ± 7 ms to
71 ± 22 ms for neural spectrum). The dissociation between
neural spectrum and correlation classifiers is not trivially due to
the differences in the training procedure between the two task
(e.g., different training sound durations; Methods), because the
differences in time constant are observed within each task.
Furthermore, matching the training sound duration for the rec-
ognition classifier does not appreciably affect the general trends
(SI Appendix, Fig. S5), suggesting that the differences reflect
task-specific information that is available in the neural spectrum
and correlation signals. Thus overall, texture discrimination can
be accomplished by the classifier more quickly than recognition,
and spectrum-based cues accumulate evidence about the sound
more quickly in both tasks.

Sound Texture Statistics Facilitate Recognition but Not Discrimination
of Natural Sounds. A series of parallel studies using an identical
sound paradigm were carried out to determine how human lis-
teners discriminate and identify sound textures and to determine
how different statistics contribute to both tasks. In the texture
recognition task, subjects listened to one of five sounds and were
asked to identify the sound they heard, whereas for texture dis-
crimination, subjects listened to two sounds and were asked to
report whether the sounds were the same or different (two-alternative
forced choice [2AFC]; Methods). As for the neural classifier, distinct
differences are observed in the texture recognition and discrimination
tasks and distinct performance trends are observed across sound
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Fig. 4. Decoding neural correlations and neural
spectrums for sound recognition and categorization.
Classification results are shown as a function of
sound duration. Stimuli were synthetic sounds with
full statistics (+Corr condition; Methods). (A) Single-
trial classification results for the recognition task
(Methods) for the penetration site shown in Fig. 3.
The performance of each individual sound (black
curves) and the average results (red curve) are shown
for different classifiers (spectrotemporal, spectral,
temporal, and neural spectrum). (B) Classification
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etration site in A. (C and D) Average performance
across n = 29 penetration sites. Shaded areas, SD.
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durations and added statistics (Fig. 7A; P < 0.001, m-way ANOVA).
First, in the recognition task, performance tends to improve upon
adding statistics to the synthetic variants (48% improvement from
50.0 ± 10.6% to 98.0± 2.7%, Spec to +Corr for the 1-s duration; P <
0.05, paired t test) and a significant increase in recognition perfor-
mance is also observed across sound durations (29% improvement
from 71.0 ± 12.9% to 100.0 ± 0.0%, shortest to longest duration for
the Ori condition; P < 0.05, paired t test). Thus, the including high-
order statistics seem to have a pervasive role in the subject’s ability to
identify the textures used and evidence of these high-order statistics
can accumulate over relatively long durations, consistent with prior
studies reporting increased perceptual realism with added statistics
and sound duration (1, 16). This behavior sharply contrasts human
discrimination trends, where the performance is nearly maxed out
and is much more homogenous. Performance improves only subtly
upon adding statistics for the short duration sounds (93.0 ± 2.7% to
96.5 ± 3.4%, Spec to +Corr for the 62.5-ms duration; P < 0.05,
paired t test), whereas it is nearly 100% for all statistics for the longest
duration (98.5 ± 1.4% to 99.5 ± 1.0%, Spec to +Corr for the 1-s
duration; N.S., paired t test). Thus overall, texture discrimination can
be performed relatively quickly requiring few statistical cues and the
spectrum cue on its own accounts for most of the discrimination
performance. Texture recognition, by comparison, is greatly impacted
by adding high-order statistics to the synthetic variants (beyond Spec)
and such information can accumulate over time so that recognition
performance is highest for the longest sounds.
The human perceptual trends resemble results from the neural

classifier where discrimination is fast and recognition is slow and
where multiple high-order statistics contribute most profoundly
to recognition. For this reason, we compared neural classifier
against the human listener trends using matched conditions.
Fig. 7 B and C show the corresponding neural classification
trends using the neural correlation (spectrotemporal; spectral-
only and temporal-only correlation classifiers are shown in SI

Appendix, Fig. S6) and neural spectrum classifiers. Intriguingly,
several parallels between the neural classifier and human trends
are observed. First, in the recognition task, performance varies
significantly as a function of both duration and added statistics
(P < 0.001, m-way ANOVA). The neural correlation classifier
performance increases substantially with added statistics (39%
improvement from 40.0 ± 11.6% to 79.3 ± 11.0%, Spec to +Corr
for the 1-s duration; P < 0.05, paired t test) and duration (48%
improvement from 35.4 ± 6.3% to 83.0 ± 9.4%, shortest to
longest duration for the Ori condition; P < 0.05, paired t test)
and the data for 1-s duration follows a similar trend to the hu-
man recognition data. The spectrum-based classifier perfor-
mance likewise shows some improvements with statistics (from
65.1 ± 14.3% to 83.2 ± 12.2%, Spec to +Corr for the 1-s du-
ration; P < 0.05, paired t test) and duration (from 55.0 ± 12.2%
to 87.8 ± 8.4%, shortest to longest duration for the Ori condi-
tion; P < 0.05, paired t test), but these are more subtle and the
performance trends are less similar than for recognition. In
contrast, the general agreement between neural classifier and
human performance swap for the discrimination task. Here, the
correlation-based classifier shows graded improvements with
both added statistics (from 86.5 ± 6.5% to 93.3 ± 4.5%, Spec to
+Corr for the 1-s duration; P < 0.05, paired t test) and duration
(from 72.6 ± 6.4% to 92.6 ± 4.8%, shortest to longest duration
for the Ori condition; P < 0.05, paired t test), which are not
observed for human results. By comparison, the spectrum-based
classifier follows a nearly identical and much more similar trend
to the human data where discrimination performance is much
more homogenous across stimulus conditions and independent
of the sound duration (from 88.5 ± 4.6% to 94.9 ± 4.0%, shortest
to longest duration for the Ori condition; P < 0.05, paired t test)
and statistics included (from 94.4 ± 4.6% to 94.4 ± 4.6%, Spec to
+Corr for the 1-s duration; N.S., paired t test). Thus, overall,
human perception and neural decoding in the auditory midbrain
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follow similar trends where discrimination can be accomplished
quickly with only spectrum-based cues. By comparison, recognition
by both human listeners and the neural decoder is much more
dependent on high-order statistics and requires longer evidence
accumulation times to achieve high performance.

Discussion
The findings here demonstrate that the spectrum and high-order
summary statistics of natural sounds are reflected in the response
statistics of auditory midbrain ensembles. Results from the
neural decoders are consistent with and predict perceptual pat-
terns for recognition and discrimination in human listeners,
suggesting that such neural activity can mediate auditory be-
haviors. Together the neural and behavioral results support the
idea that the statistical structure in sounds is reflected in the
neural spectrum and neural correlation statistics of IC neural
ensembles and that such neural response statistics serve distinct
roles for the recognition and discrimination of natural sounds.

Neural Representation of Natural Sound Textures. How does the
brain represent natural sound textures? The synthetic textures
used in this study are constructed from summary statistics of
natural textures as measured with a relatively simple generative
model of the auditory pathway, consisting of a stage of peripheral
frequency-tuned filters that is followed by a stage of modulation
filters. Given the sequential transformation from frequency de-
composition in the cochlea to modulation decomposition along the
ascending auditory pathway, it is likely that multiple auditory
structures contribute to the extraction and representation of sum-
mary statistics. Here we have measured three neural response sta-
tistics from auditory midbrain ensembles (neural spectrum and
spectral and temporal correlations) and shown that these can con-
vey critical sound-related information.
The auditory midbrain is uniquely situated for representing

natural sound summary statistics, given its central position in the
ascending auditory pathway where multiple brainstem targets
with distinct selectivities converge and where responses from
single neurons have been shown to be modulated by various
natural sound statistics (4–6, 10). The inferior colliculus is the
first stage in the auditory pathway with a preponderance of
modulation-tuned neurons (17) and where neurons are uniquely
sensitive to correlation statistics of sounds (4, 7). Although
correlated firing between neurons has been reported to be an
inefficient mode of information transfer (redundant activity) and

correlated firing has been proposed to diminish between the
inferior colliculus and auditory cortex (18), correlated firing in
IC is in fact substantially faster and is associated with fast tem-
poral modulation features that cortical neurons do not syn-
chronize to (15). As we demonstrate here, such correlated firing
can be quite informative and may in fact provide critical infor-
mation about the identity of natural sounds. Furthermore, the IC
has a unique anatomical organization and circuitry, with neurons
being topographically organized for frequency, frequency reso-
lution, and modulation preferences along three anatomically
orthogonal dimensions (17, 19), which as a population, could
represent the modulation power spectrum of sounds (MPS sta-
tistics). Collectively, we have demonstrated that the neural en-
sembles in IC are sensitive to the high-order statistics of natural
texture sounds and that response statistics from these frequency-
organized neural ensembles may contribute toward recognition
and discrimination of natural sound textures.
Although the mechanisms underlying the transformation from

high-order sound statistics to neural ensemble statistics are not
yet clear, specific response statistics may partly correspond to
distinct statistics within the underlying texture synthesis model.
For example, the temporal correlations of the neural ensemble
are theoretically related to the modulation power spectrum sum-
mary statistic (via Fourier transform, Fig. 1C), while the spectral
correlation reflects synchronous activity across frequency channels,
analogous to the correlation summary statistic. It is important to
note, however, that there are substantial differences between the
auditory pathway and the simplified texture synthesis model that
preclude a one-to-one mapping between sound and neural response
statistics. For instance, the correlation sound statistics can affect the
strength and pattern of neural correlations in IC (Fig. 3); the re-
lationship between the sound correlation statistics and neural cor-
relations is weak (r2 = 0.09, figure S5 in ref. 4). Such disparity is
likely due to the fact that IC neurons are selective to multiple
acoustic features, including spectral and temporal modulations, and
the fact that nonlinearities can strongly impact correlated activity in
IC (15). By comparison, the model filters used to compute the
correlation statistics are relatively simple and are strictly selective
for the frequency content of the sound. Despite such differences,
the exact form of the measured statistics may not be critical. More
biologically realistic synthesis models with different summary sta-
tistics could certainly be selected and might more accurately predict
behavior or the neural activity. More important to our conclusions is
the general observation that statistics of the sound modulate neural
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response statistics and that statistics beyond the spectra appear to
influence neural coding and perception.

Relationship to Visual Textures. Texture synthesis methods were
originally developed for vision (20), and both visual and auditory
texture synthesis models involve similar receptive field hierarchies
and similar statistics (marginals, power spectrum, correlations) (1,
20). As for audition, natural scene statistics from such models can
drive the firing of visual cortex neurons in ways that likely con-
tribute to visual perception (21, 22). Furthermore, similar to what
we report here for IC, correlated firing in visual cortex can be
driven directly by high-order visual scene structure (23).
The recent use of texture synthesis to study vision and audition

(16, 20) is in part motivated by the fact that realistic texture
stimuli can be generated with models that account for underly-
ing transformations of both modalities and which suggest com-
mon sensory processing principles. However, there are some
noticeable difference between the two modalities. Perhaps the

most noticeable distinction is the fact that auditory textures
overwhelmingly rely on temporal sound structure, whereas visual
textures do not. Visual textures can be generated with a purely
static model (no time dependency) which contains spatially
segregated receptive fields and summary statistics that account
for the high-order spatial statistics between image pixels. By
comparison, natural sound texture synthesis involves receptive
fields that operate simultaneously in time and frequency and
where all of the measured summary statistics are averaged over
time. While most of the relevant information in dynamic natural
scenes is relatively slow (<10 Hz) (24), natural sounds contain
perceptually salient temporal cues which cover several orders of
magnitude (∼0.5 Hz to 1.0 kHz) (25). These cues span distinct
perceptual ranges of rhythm, roughness, and pitch, and auditory
neurons selectively synchronize to these ranges across the audi-
tory hierarchy (25, 26). Thus, in contrast to vision, where textures
can be identified with purely statistic images that contain spatial
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statistics only (27), natural sound textures require temporal
structure to be meaningful (1).
As shown here, many of the informative high-order neural

response statistics are inherently temporal. For instance, the
spectral and temporal correlation statistics are both derived from
temporal response that are synchronized to the sound envelopes
up to several hundredths of hertz and thus both statistics rely
heavily on temporal synchronized neural activity. Furthermore, a
static sound (constant spectrum, as for Spec) that lacks temporal
structure, does not form a realistic auditory impression (1) and,
as shown here, cannot be easily identified as arising from a
unique auditory source by humans or the neural decoders. Thus,
a major advantage of auditory texture stimuli is that they have
modifiable high-order structure which is critical perceptually. As
shown, neural responses are sensitive to this structure and, given
the highly nonlinear transformations in audition, these stimuli
may lead to a more complete understanding of perceptual and
neural coding strategies for such high-order sound structure
when compared to more traditional auditory stimuli, such as
tones or amplitude-modulated sounds.

Comparing Perception and Neural Decoding. Neural response sta-
tistics in IC ensembles reflect and are sensitive to the summary
sound statistics which enabled both discrimination and recogni-
tion of the natural sound textures studied here. As shown, the
pattern and strength of neural correlations is strongly influenced
by the summary statistics included in the synthetic variants. Upon
adding summary statistics to the synthetic texture, neural cor-
relations converge upon and more closely resemble that of the
original texture sound resulting in patterned activity that is more
easily recognized by the neural classifier. Similar behavior was
observed for the human listeners whereby the recognition per-
formance improves upon adding summary statistics to the syn-
thetic variants. By comparison, the neural spectrum does not
vary substantially when adding summary statistics to the synthetic
variants, despite large perceptual differences in these sounds.
Such insensitivity to the added statistics mirrors the neural dis-
crimination trends and human performance, both of which are
largely insensitive to the included summary statistics.
While texture recognition appears to be linked to high-order

sound and response structure, texture discrimination is much
more stable and appears to depend much less on which summary
statistics are included. One notable difference between neural
classification and human psychoacoustical data is that the neural
classifier was trained using the five original texture sounds for
the recognition task, whereas humans were presented these
sounds blindly without feedback. Thus, human listeners had no
knowledge of the particular statistics for the five texture sounds
and instead they relied on prior learned knowledge for these
sound categories. Despite this, both humans and the neural
classifier appear to be able to utilize summary statistics for rec-
ognition since, in both instances, adding statistics to the synthetic
variants improves performance. In contrast, the neural discrim-
ination classifier used the neural response statistics directly from
the two sounds being discriminated which more closely resem-
bles the perceptual comparison between the two sounds carried
out by human listeners. Sounds could be easily discriminated,
both by human observers and the neural classifier, even if high-
order summary statistics are not included in the synthetic vari-
ants. This suggests that the sound spectrum, while not the sole
cue used for discrimination, may be sufficient for discrimination
on its own. Spectrum equalized sounds can be discriminated and
recognized from neural ensemble responses (Fig. 5D). Moreover,
these sounds are perceptually quite different and can be readily
identified or distinguished from each other (SI Appendix and
Sounds S26–S30). Thus, if spectrum cues are not available it is
possible to take advantage of high-order structure in the neural ac-
tivity (neural correlations) for both recognition and discrimination.

An intriguing aspect of both the neural and human findings is
that the evidence integration time scales can depend critically on
both the chosen statistic and the perceptual task. Texture dis-
crimination can be accomplished relatively easily with spectrum-
based cues only and, with both the human listeners and neural
decoders, and the integration of spectrum cues is exceptionally
fast. Although this does not exclude the possibility of high-order
cues being used, it suggests that spectrum cues are sufficient for
high accuracy natural texture discrimination. This is consistent
with prior findings suggesting that texture excerpts (different
exemplars of the same texture) can be discriminated readily with
short duration sounds where spectrum cues differ and that they
become increasingly difficult to discriminate for longer dura-
tions, where presumably the average spectrum and high-order
statistics are similar (16). By comparison, our data suggest that
recognition of natural sound textures appears to depend much
more heavily on the availability of high-order summary statistics
and evidence about the summary statistics needs to be accumu-
lated over relatively long durations to be informative, both
neurally and behaviorally. Such findings are consistent with prior
perceptual studies where it has been shown that high-order
summary statistics are necessary for creating realistic impressions
of sounds (1) and that texture discrimination (from different
categories) improves with increasing sound duration (16).
Our results build on these findings by suggesting that low-
and high-order summary statistics appear to have distinct
evidence integration times and these appear to contribute differ-
ently to recognition and discrimination of sound textures.
Altogether, the findings here suggest that information from

neural response statistics contribute differentially to recognition
and discrimination of sound textures. Low-order summary statistics
(e.g., spectrum) and the corresponding neural response statistics
(e.g., neural spectrum), accumulate information quickly, allowing
for fast and accurate sound discrimination. High-order sound sta-
tistics, by comparison, are reflected in coordinated activity across
IC neural ensembles (neural correlations). Such activity requires
longer evidence accumulation times to be useful yet it contrib-
utes substantially more toward the recognition of natural sounds.

Methods
Natural Texture Sounds and Audio Delivery. Five natural sound textures were
used in this study: crackling fire, bird chorus, outdoor crowd, running
water, and rattling snake sounds. These sounds were selected since they
each have distinct spectral and temporal properties. These real-world
textures were initially analyzed in a generative auditory model that
contained hierarchical filters representing the signal processing of the
cochlea and midlevel (e.g., auditory midbrain) auditory system, and the
statistics of the resulting decomposition were measured and used to
generate synthetic variants with reduced statistics (1). For each sound,
synthetic variants were generated that included only the sound power
spectrum (Spec), or which sequentially incorporated the channel marginal
statistics (+Mar), modulation power spectrum (+MPS), and the correlations
between frequency channels (+Corr) (Fig. 1). To control for the spectral cues in
each sound, we also generated sound variants with a matched 1/f power
spectrum (pink noise) (4). All sounds were delivered at 65 dB SPL (sound pressure
level) in a block randomized fashion through a calibrated closed speaker
audio system. Details of the texture synthesis procedures and sound delivery
are outlined in SI Appendix, Expanded Methods.

Animal Procedures. Four female Dutch Belted rabbits (age of 0.5 to 2 y) with a
weight of 1.5 to 2.5 kg were used. We measured the auditory response
properties of neuron ensembles in the auditory midbrain (IC) of unanes-
thetized animals during passive listening to experimental sounds. All ex-
perimental procedures were approved by the University of Connecticut
Animal Care and Use Committee and in accordance with NIH and the
American Veterinary Medical Association guidelines.

Briefly, aMUA (4, 28) was recorded from tonotopically organized re-
gions of IC using linear arranged multichannel silicon probes (NeuroNexus;
Fig. 2 A and B). For the sound texture paradigm, we recorded from a total of
38 penetration sites in four animals and 29 sites were used in this study due to
the data quality based on response stability, recording duration (a minimum of
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15 trials per sound variant), and the covered frequency range (at least two
octaves). For the spectrum equalized paradigm, we recorded from an addi-
tional 11 penetration sites from two animals. Details of surgical, neural recording
procedures and aMUA analysis are outlined in SI Appendix, Expanded Methods.

Population Response Metrics: Neural Spectrum and Neural Correlations. We
separately assessed the role of spectrum- and correlation-based codes and
their contribution toward neural recognition and discrimination of natural
sound textures. Spectrum-based codes account for the tonotopic decom-
position of sounds along the auditory pathway. They can be viewed as a
conventional place-rate code where the strength of activity is driven bottom
up by the power in the sound at each frequency channel. Here, the neural
spectrum (Fig. 2E) for a given sound at a specific recording location was
estimated by averaging the responses from each channel across trials and
time. Since neurons in IC can also potentially encode stimulus information
through coordinated firing, we estimated the stimulus-driven neural corre-
lations across the 16 tonotopic recording channels. Here we refer to the
correlations between different frequency organized channels at zero lag as
the spectral correlations (Fig. 2C). The spectral correlations account for the
similarity of the neural activity across tonotopic locations, yet they do not
account for the time scales of the coordinated neural activity. We thus also
measured the temporal correlations (Fig. 2D) which account for the timing
and pattern of the neural activity for each of the recording channels.

We quantified how the neural population responses change upon adding
stimulus statistics to the synthetic sound variants and asked how incorpo-
rating higher-order structure in the texture sounds alters neural responses.
We considered each of three-response metrics (neural spectrum, spectral
correlation, or temporal correlation) and quantified how these differed
from the original sound responses. First, we computed a similarity index (SI,
equivalent to a correlation coefficient) for each of the response metrics. The
SI quantifies the structural similarity in the population response metrics
between the synthetic condition being tested and the original sound. To
characterize how the strength of each of the response metric changes upon
adding statistics to the synthetic textures, we also computed a strength ra-
tion (SR), defined as the ratio of the response metric power between the
synthetic condition being tested and the original sound.

The analysis procedure used are identical to those described in a recent
publication (4) and are outlined in additional detail in SI Appendix,
Expanded Methods.

Single-Trial Neural Classifiers. To evaluate the extent to which the neural
spectrum and correlation statistics contribute to recognition and discrimi-
nation of texture sounds, we developed a single-trial neural classifier which
we applied separately in texture recognition and texture discrimination
paradigms. The classifier has been described in detail previously (4) and is

outlined in detail in SI Appendix, Expanded Methods. Briefly, we used a
cross-validated naïve Bayes classifier for each task. In order to account for
task-specific differences (recognition vs. discrimination) the Bayesian model
priors were intentionally designed and trained to account for the informa-
tion that is available to subjects when performing each task. In the case of
texture recognition, the classifier was required to identify a sound from the
provided neural response (e.g., neural spectrum or correlation) in a five-
alternative forced choice task and the maximum a posteriori (MAP) rule
was used to identify the sounds from the neural activity. For the sound
discrimination paradigm, the goal was to determine whether the neural
responses to the two sounds provided (at a specified sound duration) could
be differentiated from one another. In this case, in addition to having
identical durations, both sounds tested were selected from variants for the
same statistic condition used (synthetic or original; e.g., fire vs. bird sounds
both containing +MPS condition) and the model priors were selected to
match these conditions. We then used the classifier to determine whether
the two sounds were different from each other using the MAP rule.

Human Psychoacoustics. We carried out complementary experiments in hu-
man participants to determine how different sound statistics contribute to
recognition and discrimination of texture sounds. All procedures were approved
by the Institutional Review Board at the University of Connecticut. Participants
were provided verbal and written descriptions of the experiment procedures
and study rationale and they consented to participate in the experiments.

Two male and three female participants ages 20 to 35 were recruited for
the study. Briefly, participants were asked to recognize or discriminate
texture sounds of varying durations (62.5, 250, and 1,000 ms) and statistics
(Spec, +Mar, +MPS, +Corr, and Ori). In the recognition task, participants
listen to one of the five sounds for a given condition (same as physiology)
and are required to identify the sound they hear. In the discrimination task,
subjects listen to two sounds, and are required to respond as to whether the
sounds are the same or different (2AFC). A detailed account of the psy-
choacoustic procedures are provided in SI Appendix, Expanded Methods.

Data Availability. All study data are included in the article and supporting
information.
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