Publications

PubMed

Google Scholar

 

Journal Publications

  • Zhai X, Khatami F, Sadeghi M, He F, Read HL, Stevenson IH, and Escabi MA (2020) Distinct midbrain response statistics are associated with sound recognition and discrimination during the construction of natural sound textures.  Proceedings of the National Academy of Sciences, 2000, 10.1073/pnas.2005644117. (pdf)
  • Khatami F, Escabí MA (2020) Spiking network optimized for word recognition in noise predicts auditory system hierarchy. PLoS Comput Biol 16(6): e1007558. https://doi.org/10.1371/journal.pcbi.1007558 (pdf)
  • Sadeghi Najafabadi M, Chen L, Dutta K, Norris A, Feng B, Schnupp JWH, Rosskothen-Kuhl N, Read HL and Escabí MA (2020) Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces. Front. Neurosci. 14:709. doi: 10.3389/fnins.2020.00709 (pdf)
  • Magnuson, J.S., You, H., Luthra, S., Li, M., Nam, H., Escabí, M., Brown, K., Allopenna, P.D., Theodore, R.M., Monto, N. and Rueckl, J.G. (2020), EARSHOT: A Minimal Neural Network Model of Incremental Human Speech Recognition. Cogn Sci, 44: e12823. doi:10.1111/cogs.12823 (pdf)
  • Sadeghi M, Zhai X, Stevenson IH, Escabí MA, (2019) A Neural Ensemble Correlation Code for Sound Category Identification, PLoS Biol. 17(10). doi: 10.1371/journal.pbio.3000449. (pdf)
  • Chen C, Read HL, Escabí MA (2019) A temporal integration mechanism enhances frequency selectivity of broadband inputs to inferior colliculus. PLoS Biol 17(6): e2005861. https://doi.org/10.1371/journal.pbio.2005861 (pdf)
  • Osman AD, Lee CM, Escabí MA, Read HL. A hierarchy of time scales for discriminating and classifying the temporal shape of sound in three auditory cortical fields. J Neuroscience. 2018: DOI: https://doi.org/10.1523/JNEUROSCI.2871-17.2018. (pdf)
  • Khatami F, Wöhr M, Read HL, Escabí MA. Origins of scale invariance in vocalization sequences and speech. PLoS Comput Biol. 2018 Apr 16;14(4):e1005996. doi: 10.1371/journal.pcbi.1005996. (pdf)
  • Zheng, M.A. Escabí, and R.Y. Litovsky. Spectrotemporal cues enhance modulation sensitivity in cochlear implant users. Hearing Research, 2017. 351, 45-54. (pdf)
  • Lee CM, Osman AF, Volgushev M, Escabí MA, Read HL. Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields. J Neurophysiol. 2016 Feb 3:jn.00784.2015. doi: 10.1152/jn.00784.2015. (pdf)
  • Jacobson TK, Schmidt B, Hinman JR, Escabí MA, Markus EJ. Age-related decrease in theta and gamma coherence across dorsal ca1 pyramidale and radiatum layers. Hippocampus. 2015. doi: 10.1002/hipo.22439. (pdf)
  • Escabí MA, Read HL, Viventi J, Kim DH, Higgins NC, Storace DA, Liu AS, Gifford AM, Burke JF, Campisi M, Kim YS, Avrin AE, Spiegel Jan Vd, Huang Y, Li M, Wu J, Rogers JA, Litt B, Cohen YE. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings. J Neurophysiol. 2014 Sep 15;112(6):1566-83. doi: 10.1152/jn.00179.2013. (pdf)
  • Long LL, Hinman JR, Chen CM, Stevenson IH, Read HL, Escabi MA, Chrobak JJ. Novel acoustic stimuli can alter locomotor speed to hippocampal theta relationship. 2014 Sep; 24(9):1053-8. doi: 10.1002/hipo.22308.
  • Long LL, Hinman JR, Chen CM, Escabi MA, Chrobak JJ. Theta Dynamics in Rat: Speed and Acceleration across the Septotemporal Axis. PLoS One. 2014 May 19;9(5):e97987.
  • Penley SC, Hinman JR, Long LL, Markus EJ, Escabí MA, Chrobak JJ (2013) Novel space alters theta and gamma synchrony across the longitudinal axis of the hippocampus. Front Syst Neurosci. 2013 Jun 25;7:20. doi: 10.3389/fnsys.2013.00020.
  • Zheng and M.A. Escabi (2013) Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues. J Neurophysiology. 110(3):587-606.
  • Schmidt B, Hinman JR, Jacobson TK, Szkudlarek E, Argraves M, Escabí MA, Markus EJ. (2013) Dissociation between Dorsal and Ventral Hippocampal Theta Oscillations during Decision-Making. J Neurosci; 33(14):6212-24.
  • Jacobson TK, Howe MD, Schmidt B, Hinman JR, Escabi MA, Markus EJ. (2013) Hippocampal theta, gamma, and theta-gamma coupling: Effects of aging, environmental change, and cholinergic activation. J Neurophysiol. 109 (7):1852-65. (Impact Factor=2.89)
  • Hinman JR, Penley SC, Escabí MA and Chrobak JJ. (2013) Ketamine disrupts theta synchrony across the septotemporal axis of the CA1 region of hippocampus. J Neurophys. 109:(2) 570-579.
  • Chen C, Read HL, Escabí MA (2012). Spectrotemporal sound preferences of neighboring inferior colliculus neurons: implications for local circuitry and processing. Front. Neural Circuits 6:62.
  • Penley SC, Hinman JR, Sabolek HR, Escabí MA, Markus EJ, Chrobak JJ (2012) Theta and gamma coherence across the septotemporal axis during distinct behavioral states. Hippocampus. 22(5):1164-75.
  • Chen C, Read HL, Escabí MA (2012). Precise feature based time scales and frequency decorrelation lead to a sparse auditory code. J Neurosci. 20;32(25):8454-68.
  • Hinman JR, Penley SC, Long LL, Escabí MA, Chrobak JJ. (2011) Septotemporal variation in dynamics of theta: speed and habituation. J Neurophysiol. 105(6):2675-86.
  • L. Read, D.W. Nauen, M.A. Escabí, L.M. Miller, C.E. Schreiner, J.A. Winer. (2011) Distinct core thalamocortical pathways to central and dorsal primary auditory cortex. Hear Res 274 (1-2):95-104.
  • C. Higgins, D.A. Storace, M.A. Escabi, & H.L. Read. (2010) Specialization of binaural responses in ventral auditory cortices. J Neurosci 30, 14522-14532.
  • A. Rodriguez, C. Chen, H.L. Read & M.A. Escabi. (2010) Neural modulation tuning characteristics scale to efficiently encode natural sound statistics. J Neurosci 30, 15969-15980.  (pdf)
  • A. Rodríguez, H.L. Read, M.A. Escabí (2010) Spectrotemporal Modulation Tradeoff Along the Tonotopic Axis of the Inferior Colliculus. Journal of Neurophysiol. 103: 887-903.  (pdf)
  • R. Sabolek, S.C. Penley, J.G. Bunce, E.J. Markus, M.A. Escabi and J.J. Chrobak (2009) Theta and Gamma Coherence along the Septotemporal Axis of the Hippocampus. J Neurophysiol. 101(3):1192-200.
  • Zheng and M.A. Escabi (2008) Distinct roles for onset and sustained activity in the neural code for temporal periodicity and acoustic envelope shape. J Neurosci. 28(52):14230–44.  (pdf)
  • Escabí MA, Higgins NC, Galaburda AM, Rosen GD, Read HL. (2007) Early cortical damage in rat somatosensory cortex alters acoustic feature representation in primary auditory cortex. 150(4):970-83.
  • Higgins NC, Escabí MA, Rosen GD, Galaburda AM, Read HL. (2008) Spectral processing deficits in belt auditory cortex following early postnatal lesions of somatosensory cortex.
  • Nassiri, M.A. Escabi (2008). Illusory spectrotemporal ripples created with binaurally correlated noise. J Acoust Soc Am. 123 (4).
  • Escabi, M.A., Read, H. (2005). Neural Mechanisms for Spectral Analysis in the Auditory Midbrain, Thalamus, and Cortex. Int. Rev. Neurobiol. 70. 207-252.  (pdf)
  • M.A. Escabí, R. Nassiri, L.M. Miller, C.E. Schreiner, H.L. Read (2005) The contribution of spike threshold to acoustic feature selectivity, spike information content and information throughput. J Neurosci. 25 (41):9524-34. (pdf)
  • Escabí M.A., Miller LM, Read HL, Schreiner CE. (2003) Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. J Neurosci. 23 (37): 11489-504. (pdf)
  • Escabí M.A., Read HL. (2003) Representation of spectrotemporal sound information in the ascending auditory pathway. Biol Cybern.89 (5):350-62. (pdf)
  • Qiu, C.E. Schreiner, and M.A. Escabí. (2003) Gabor analysis of auditory midbrain receptive fields: Spectro-temporal and binaural composition. J Neurophysiol. 90 (1): 456-476.  (pdf)
  • A. Escabí and C.E. Schreiner (2002). Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. J Neurosci 22(10): 4114-31. (pdf)
  • M. Miller, M.A. Escabí, H.L. Read, and C.E. Schreiner (2002). Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87(1): 516-27. (pdf)
  • M. Miller, M.A. Escabí, H.L. Read, and C.E. Schreiner (2001). Functional convergence of response properties in the auditory thalamocortical system. Neuron 32(1): 151-60.  (pdf)
  • M. Miller, M.A. Escabí, H.L. Read, and C.E. Schreiner (2001). Feature selectivity and interneuronal cooperation in the thalamocortical system. J Neurosci 21(20): 8136-44. (pdf)
  • M. Roark and M.A. Escabí. B-spline (1999) design of maximally flat and prolate spheroidal-type FIR filters. IEEE Trans. on Signal Processing, vol. 47, n. 3, pp. 701-716.